Workshop Purpose

• Overview of climate change, science, and uncertainties
• Transportation related contribution to climate changes
• Challenges to State DOTs
• Strategies to reduce GCC emissions
• Climate Adaptation for transportation
• Planning and Policy Issues
• Proposed CEQ-NEPA requirements
• Opportunities for collaboration
Workshop Overview

I. Climate Change Science, Sources, Trends
 I. Importance and Key Challenges for State DOTs
 II. Strategies to Reduce GCC Emissions
 III. Discussion: How can State DOTs Mitigate GHG emissions?
 IV. Climate Adaptation for Transportation
V. Planning and Policy Issues
 I. Emerging Federal Legislation
 II. Proposed CEQ-NEPA Requirements
VI. Discussion: Strategies for Planning and Project Selection
VII. Discussion: Opportunities for Collaboration
VIII. Report back from Collaboration Discussion/Adjournment
I. Climate Change Science, Sources and Trends
What is climate change?

The United Nations Framework Convention on Climate Change (UNFCCC) defines Climate Change as:

“A change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.”
What is the Greenhouse Effect?

1. Solar energy passes through the atmosphere

2. Some energy is reflected back out to space

3. Earth’s surface is heated by the sun and radiates the heat back out towards space.

4. GHG in the atmosphere trap some of the heat
What are the temperature trends?
Temperature Trends in Colorado

Figure 3. Average Annual Temperature Change in Colorado Relative to US & World (Source: Assoc. of CA Water Agencies and Colorado River Water Users Assoc., 2005)
Projected impacts of climate change

<table>
<thead>
<tr>
<th>Global temperature change (relative to pre-industrial)</th>
<th>0°C</th>
<th>1°C</th>
<th>2°C</th>
<th>3°C</th>
<th>4°C</th>
<th>5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falling crop yields in many areas, particularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>developing regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible rising yields in some high latitude regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falling yields in many developed regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small mountain glaciers disappear – water availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in many areas, including Mediterranean and Southern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea level rise threatens major cities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive Damage to Coral Reefs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rising number of species face extinction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme Weather Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rising intensity of storms, forest fires, droughts,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flooding and heat waves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of Abrupt and Major Irreversible Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing risk of dangerous feedbacks and abrupt,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large-scale shifts in the climate system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is the evidence of climate change?

- 14% increase in human GHG since 1990 – USA
- 26% increase in human GHG since 1990 – world
- GHG levels are at highest in 1000s of years
- 2000-2009 was the warmest decade on record worldwide
- Heat stored in oceans has increased substantially
- Sea surface temperatures have been higher during the past three decades than at any other time since large-scale measurement began in the late 1800s.
- In recent years, a higher percentage of precipitation in the United States has come in the form of intense single-day events.
- 8 of top 10 years for extreme one-day precipitation events occurred since 1990.
- The occurrence of abnormally high annual precipitation totals has increased.
- Intensity of tropical storms in the Atlantic, Caribbean, and Gulf has risen noticeably over the past 20 years.
- 6 of the 10 most active hurricane seasons have occurred since the mid-1990s.

Source: EPA, Climate Change Indicators in the U.S., May 2010
What is the Evidence of Climate Change (cont’d)

- Sea level worldwide has increased at a rate of roughly 0.6” per decade since 1870.
- Sea level increase has accelerated to more than 1”/year in recent years.
- Oceans have become more acidic over the past 20 years, and studies suggest that the ocean is substantially more acidic now than it was a few centuries ago. Rising acidity is associated with increased levels of carbon dioxide dissolved in the water, and affects sensitive organisms such as corals.
- Sept 2007 had least Arctic sea ice of any year on record, followed by 2008 and 2009.
- Arctic sea ice in 2009 was 24 percent below the 1979-2000 historical average.
- Glaciers in U.S. and around the world have generally shrunk since the 1960s and the rate at which glaciers are melting appears to have accelerated over the last decade.
- Glaciers worldwide have lost more than 2,000 cubic miles of water since 1960.
- Average length of the growing season in the lower 48 states has increased by about two weeks the since beginning of the 20th century.
- North American bird species have shifted their wintering grounds northward by an average of 35 miles since 1966, with a few species shifting by several hundred miles.

Source: EPA, Climate Change Indicators in the U.S., May 2010
How widespread are climate change concerns?

- Over 2000 leading scientists worldwide contributed to IPCC report
- 33 U.S. states have developed climate change action plans
- U.S. Climate Action Partnership includes 23 major corporations and 5 nongovernmental groups which have called for U.S. Congress to enact strong GHG targets to achieve significant reductions in GHG:

Where do all those GHG come from?

Comparison: Annual* & Cumulative** CO₂ Emissions

** Cumulative Emissions from 1850-2000, CAIT WRI
What GHG targets have been set?

- Scientists recommend **60-80% GHG reduction below 1990 level by 2050**
- Many states and countries have adopted similar targets
- President Obama’s budget: **80% GHG reduction below 2005 by 2050**
- Waxman-Markey bill: **17% below 2005 by 2020 and 83% below 2005 by 2050**
- Kerry-Lieberman bill: **17% below 2005 by 2020 and 83% below 2005 by 2050**
- Colorado: **20% below 2005 by 2020 and 80% below 2005 by 2050**
What is transportation’s share of U.S. GHG?

Source: U.S. DOT Report to Congress, 2010
Figure 2. Gross GHG Emissions by Sector, 2000, Colorado and US

Colorado
- Fossil Fuel Industry (CH4) 9%
- Industrial Process 2%
- Waste 2%
- Agriculture 9%
- Electricity Consumption 37%
- Transport 23%
- Res/Com Fuel Use 10%
- Industrial Fuel Use 9%

US
- Transport 26%
- Industrial Process 5%
- Waste 4%
- Agric. 7%
- Fossil Fuel Ind. (CH4) 3%
- Electricity 33%
- Industrial Fuel Use 14%
- Res/Com Fuel Use 9%
Colorado Actions

• Climate Action Plan 2007
 – Reduce GHG 20% by 2005/80% by 2050
 – Greening of State Government – 2007
 – CDOT Sustainability Council
 • CDOT Sustainability Working Group

• Transportation Environmental Resource Council (TERC)
 – Performance measures
 – Planning and NEPA Template
 – Agency partnerships
Colorado Actions

• Statewide Sustainability Principles
 – All state agencies
 – Sustainability clearinghouse proposal FY2011-2012

• Air Quality Policy Directive and Action Plan - 2009
 – Address unregulated mobile source air toxics and GHGs
 – Positions CDOT to better meet 2007 Greening Government goals
 – Goals include transit, VMT reduction, operational efficiencies, retrofits, alternative fuels, public outreach, etc.
What are U.S. transportation GHG trends?
- U.S.DOT Report to Congress, 2010

<table>
<thead>
<tr>
<th>Source</th>
<th>Change, 1990-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>All U.S. GHG Sources</td>
<td>15%</td>
</tr>
<tr>
<td>U.S. Transportation</td>
<td>27%</td>
</tr>
<tr>
<td>Light Duty Vehicles</td>
<td>24%</td>
</tr>
<tr>
<td>Freight Trucks</td>
<td>77%</td>
</tr>
<tr>
<td>Commercial Aircraft</td>
<td>4%</td>
</tr>
</tbody>
</table>
What are the global trends in vehicle ownership and use?

• Today, car ownership in the U.S. is greater than in India, China, and Brazil combined.
• By 2050, car ownership in those countries will be 5x greater than in the U.S.

Challenges of Climate Change for State DOTs

- Moving away from our dependence on oil and reducing GHG emissions will be the greatest challenge to decision-making for transportation policies, programs, and investments in the coming decades.

- Other sectors are moving on climate change policies faster than transportation.

- States are adopting sweeping policies with little or no input from transportation agencies or experts.

Source: Transportation’s Role in Climate Change: TRB Executive Committee, June 2008
"We know we need to get ready for a world in which energy will only be more expensive."

Wal-Mart will cut 20 MMT of GHG from its supply chain by the end of 2015 — equivalent to removing >3.8 million cars from the road for a year.

Wal-Mart is already requiring suppliers to cut packaging, selling “Walmart-label” CFL bulbs in Mexico, and labeling clothes as cold-water wash.

**

Should state DOTs take a page from Wal-Mart’s book?
DOE expects slight decline in LDV GHG emissions nationally

GHG Emissions from Light-Duty Vehicles
(USDOE, Annual Energy Outlook 2009)
U.S. VMT growth rates are declining

- VMT growth has been steadily declining since the 1950s
- VMT growth slowed to about 1.5% in early 2000s
- VMT growth was actually negative in 2008, pattern of upward growth in 2009
- VMT is affected by population, economy, transportation prices, demographics, land use
- AASHTO supports reducing VMT growth rate to 1% per year

Source: Alan Pisarski and Cambridge Systematics

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
VMT closely linked to disposable income
DOE expects VMT and MPG both to rise
As VMT and MPG rise, GHG is nearly flat
What should the GHG reduction target be for the transportation sector?

- **Economists:**
 - Reduce GHG emissions as cost-effectively as possible, even if that means much larger reductions in some sectors than others.
 - Evidence is accumulating that reducing transportation GHG 80% would be more costly than same % reduction in other sectors.
 - Ergo: Transportation GHG reduction targets probably should be lower.

- **Political reality:**
 - Transportation will be expected to contribute its "fair share".
 - Room for debate about what "fair share" means.
 - Often-cited goal is **60 to 80%** from current levels.
State Climate Plan Goals

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>% Reduction in Transportation GHG</th>
<th>% of all GHG Reductions from Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhode Island</td>
<td>2020</td>
<td>N/A</td>
<td>20%</td>
</tr>
<tr>
<td>New York</td>
<td>2020</td>
<td>18%</td>
<td>7%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>2020</td>
<td>N/A</td>
<td>7%</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>2025</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>Maine</td>
<td>2020</td>
<td>23%</td>
<td>27%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2025</td>
<td>27%</td>
<td>5%</td>
</tr>
<tr>
<td>Oregon</td>
<td>2025</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2020</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>Colorado</td>
<td>2020</td>
<td>22%</td>
<td>6%</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2020</td>
<td>31%</td>
<td>11%</td>
</tr>
</tbody>
</table>
State Climate Action Plans

- Highly “aspirational”
- Managed by state environmental agencies
- Steering Committees included multiple environmental advocates and rarely had transportation agency reps
- State DOT involvement was at a technical advisory level, whose input was often rebuffed
- Example: VT strategies would reduce 2030 VMT from 10.5 B (base case) to 3.9 B
State Climate Plans – Transportation Elements

Vary All Across the Map

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>Vehicle</th>
<th>Low Carbon Fuels</th>
<th>Smart Growth and Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>2020</td>
<td>40%</td>
<td>26%</td>
<td>22%</td>
<td>13%</td>
</tr>
<tr>
<td>NC</td>
<td>2020</td>
<td>35%</td>
<td>12%</td>
<td>38%</td>
<td>15%</td>
</tr>
<tr>
<td>SC</td>
<td>2020</td>
<td>14%</td>
<td>55%</td>
<td>29%</td>
<td>1%</td>
</tr>
<tr>
<td>CT</td>
<td>2020</td>
<td>51%</td>
<td>38%</td>
<td>8%</td>
<td>2%</td>
</tr>
<tr>
<td>ME</td>
<td>2020</td>
<td>53%</td>
<td>25%</td>
<td>21%</td>
<td>1%</td>
</tr>
<tr>
<td>MD</td>
<td>2025</td>
<td>24%</td>
<td>12%</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>NY</td>
<td>2020</td>
<td>59%</td>
<td>11%</td>
<td>27%</td>
<td>4%</td>
</tr>
<tr>
<td>PA</td>
<td>2025</td>
<td>53%</td>
<td>15%</td>
<td><1%</td>
<td>28%</td>
</tr>
<tr>
<td>MN</td>
<td>2025</td>
<td>15%</td>
<td>35%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>VT</td>
<td>2028</td>
<td>21%</td>
<td>14%</td>
<td>49%</td>
<td>17%</td>
</tr>
</tbody>
</table>
What are Other State DOTs Doing on Climate Change?

- New York: http://www.nysdot.gov/nasto/repository/WS4d_Zamurs%20_AASHTO_0.ppt
- Florida: http://www.dep.state.fl.us/climatechange/files/action_plan/chap5_trans.pdf
Why is vehicle “decarbonization” necessary?

“In the long term, carbon free road transport fuel is the only way to achieve an 80-90% reduction in emissions, essentially “decarbonization.”

--The King Review for the U.K. Government, by Professor Julia King, Vice-Chancellor of Aston University and former Director of Advanced Engineering at Rolls-Royce plc, March 2008

“[I]n the period beyond 2100, total GHG emissions will have to be just 20% of current levels. It is impossible to imagine this without decarbonization of the transport sector.”

GHG reduction debates overshadow 2 more challenges bearing down on state DOTs

• **New revenue sources**: New revenue sources are needed that are appropriate in a climate change-dominated world, with electric vehicles and new fuels.

• **Climate adaptation**: Huge funding increases, risk-based planning and programming, and tough policy decisions will be needed to adapt to a changing climate.
Summary

• Climate change is a global and cumulative problem
• 60-80% GHG reduction is needed
• In developing countries, GHG emissions will increase substantially
• Delay will magnify the difficulty of reducing GHG
• Transportation and GHG Tied to Population and Economic Growth
• State transportation elements to reduce GHG vary widely
• Decarbonization of transportation fuels will be necessary
II. Strategies to Reduce Transportation GHG Emissions
Five GHG “Legs”

Transportation GHG reduction has 5 legs:

1. Vehicle efficiency
2. Low-carbon fuels
3. VMT Reductions (including land use)
4. Vehicle/System Operations
5. Construction, Maintenance, and Agency Operations

Examples:

- Higher CAFE standards 380 gm/mile to 250 gm/mile 2016
- CA’s low carbon fuel standard
- Less travel, could be in part due to land use changes
- Signalization, ITS, Eco-driving
- Materials, maintenance practices
Policy debate can be intense

- **Climate skeptics**: Climate change isn’t happening, or isn’t human-induced
- **Environmental view**: Transform land use, increase transit, and reduce VMT
- **Techno-optimist view**: Transform vehicle/fuel technology and improve highway/driver operations
- **Pragmatic view**: Combination -- mostly vehicles/fuels, some operational efficiency, plus modest role for land use, transit, and VMT moderation
Vehicle/Fuel Improvements Will be the Dominant Source of GHG Reductions for LDVs

By 2020-2030:

- 50% cut in GHG/mile is feasible from conventional technologies and biofuels
- Compare these GHG rates in U.S. and Europe:
 - 380 grams/mile 2009 in the U.S.
 - 250 grams/mile 2016 under new Obama standard
 - 256 grams/mile 2007 actual in the E.U.
 - 209 grams/mile 2012 under E.U. regulation
 - 153 grams/mile 2020 under E.U. regulation
- LDV purchase cost will rise, but fuel savings will be greater than vehicle cost increase
- Win-win-win: reduces energy use, reduces GHG, saves money
2010 NHTSA/EPA Rule Significantly Reduces Highway GHG Below Baseline

EPA MY2012-2016 GHG Standards Projections Based on Public Target

<table>
<thead>
<tr>
<th></th>
<th>Fuel Economy</th>
<th>Greenhouse Gas Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 CAFE standard</td>
<td>27.3 mpg</td>
<td>325 gpm</td>
</tr>
<tr>
<td>2016 target GHG standard</td>
<td>(34-35.5 mpg)</td>
<td>250 gpm</td>
</tr>
<tr>
<td>% GHG reduction</td>
<td>--</td>
<td>23%</td>
</tr>
</tbody>
</table>

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
A 2007 MIT study predicts MPG gains of 80-85% for model year 2030 vehicles via continuous improvement of conventional technology at a rate of 2-2.5%/year.

Potential for Advanced Technologies to Increase Fuel Economy by 2030

Low-Carbon Fuels

- Many different low-carbon fuel possibilities:
 - Corn ethanol - Sugar cane ethanol - Biodiesel
 - Cellulosic biofuel - Algae biofuels - Hydrogen
 - Electricity from renewable energy or nuclear power
 - Electricity from utilities with carbon capture & storage

- Carbon intensity measured as GHG/unit of energy – must account for “life-cycle” emissions

- California LCFS:
 - Adopted in 2008
 - Aims to reduce carbon intensity of passenger vehicle fuels by 10% by 2020
 - Measures carbon-intensity on a life-cycle basis – "from field to wheel."
• EISA 2007 establishes fuel categories and eligibility requirements
• Determine if renewable fuels meet GHG thresholds set for four types of renewable fuels (E.g., corn ethanol, soy-based biodiesel, switchgrass ethanol, waste grease biodiesel)
• Emissions compared to 2005 for gasoline and diesel (depending on which is being replaced)
• Lifecycle Emissions analysis-
 – Aggregate quantity of GHGs related to full fuel cycle including all stages of production and distribution
Lifecycle Emissions

Components of lifecycle emissions:

Assumptions are made about the amount of emissions from these elements of the lifecycle.

- Domestic agriculture
- International land use change
- Tailpipe
- Domestic land use change
- Fuel and feedstock transport
- International agriculture
- Fuel production
Lifecycle Greenhouse Gas Emissions

Figure 1. Net Lifecycle Greenhouse Gas Emissions By Lifecycle Component With 100 Year Time Horizon And 2% Discount Rate.
• EISA of 2007 requires use of 36 billion gallons of biofuels by 2022.
 – Includes 21 billion gallons of advanced biofuels
 – Up from 5 billion in 2006.
• To achieve that goal, EPA mandates % of biofuels to be blended into all gasoline.

Biofuel Usage
Mandates under EISA
(billions of gallons)
Source: Bill Malley, Perkins-Cole
Possible State DOT Roles in Decarbonization

1. **Influence state policies** on low-carbon fuels/vehicles
2. **Use planning scenarios** to emphasize need for decarbonization
3. **Plan/provide plug-in infrastructure** for electric and PHEV vehicles (coordinate with utilities)
4. **Support federal transportation funding** for technology/fuel R&D
5. **Educate** the public and elected officials
6. **Provide incentives** for consumers to use lower carbon fuels/vehicles (lower fees for low-carbon vehicles/fuels)
7. **Support** low-carbon fleet conversion for state vehicle fleets
8. **Adjust** facilities and operations to accommodate decarbonized vehicles and fuels
What Would it Take to Achieve 74% LDV GHG Reduction by 2050?
1% Annual VMT Growth + 100 mpgge LDV Fleet + 10% Operational Efficiency

- Reducing VMT growth (smart growth, transit, carpooling, vanpooling, walking, TDM, and pricing-related strategies) to +1.0% annual.
- System/vehicle operational efficiency (speed limit reductions/enforcement, ecodriving, smoothing out traffic flow, proper tires and inflation, removing bottlenecks, etc.)
- Highest LDV CO2e Emissions Reductions (79% Reduction CO2e/Vehicle Mile) by 2050

Light duty fleet GHG emissions
GHG Goal 70% Reduction from 2005
LDV Strategies

- Pricing - economy-wide (carbon tax or carbon cap and trade, which would raise fuel prices)
- Pricing – transportation (PAYD insurance, parking pricing, tolls, higher user fees, cordon pricing, congestion pricing, etc.)
- Carpooling and vanpooling
- Bike/ped and transit
- Trip chaining
- Tele-working, tele-shopping, tele-education, tele-medicine
- Compact land use
Cautionary Note on VMT as Metric

Does not take into account:
• Type of fuel
• Fuel efficiency of vehicle
• Passenger vs freight trip
• Number of passengers per vehicle
• As light duty passenger fuel economy increases, cost effectiveness diminishes
• TCM lessons from 1990s – marginal emission reductions, increasing costs as technology improves
Pricing: A Necessary and Powerful Tool

- Without price signals, reducing driving extremely difficult
- Pricing incentivizes 3 legs of the GHG stool
 - Purchase of lower-carbon vehicles and fuels; and
 - Lower VMT
 - Eco-driving behavior
- Many different pricing tools available: auto “feebates,” carbon/fuel prices, PAYD insurance, mileage fees, parking pricing, congestion pricing, etc.
- Pricing produces revenue to invest in alternatives

“We know we need to get ready for a world in which energy will only be more expensive.” -- Wal-Mart
Consumers respond to pricing

Gasoline Prices Surged in Summer ‘08, and Consumers Responded, revealing fuel price elasticity

National Vehicle Miles Traveled vs. Gasoline Prices

- 2005: Monthly total VMT for June: 258 billion, Gasoline Price: $2.19
- 2006: Monthly total VMT for June: 260 billion, Gasoline Price: $2.93
- 2007: Monthly total VMT for June: 260 billion, Gasoline Price: $3.10
- 2008: Monthly total VMT for June: 250 billion, Gasoline Price: $4.10

VMT (billions)
Carpooling and Vanpooling

• **Important but underappreciated** (7 times as many PMT for work trips nationally are in carpools and vanpools as on transit)
• **Low cost** for government, wide availability, saves users money
• **Effective in all kinds of areas** – rural, small urban areas, suburban, urban
• **Nearer-term payoff** than most transportation strategies
• **Atlanta MPO and WASHCOG pay for commuters to carpool** ($3/day Atlanta, $2/day WASHCOG)
Transit Helps Reduce GHG but National Impact is Small

- Transit serves many goals and has broad support, but transit serves just 1% of PMT and 0% of freight.

- APTA studies: (a) Transit reduced GHG by 6.9 MMT in 2005; or (b) by 37 MMT in 2005. This is 0.3% to 1.7% of U.S. transportation GHG.

- DOE: Bus transit has higher GHG/passenger mile traveled than average auto use in the U.S.

- Transit GHG benefits are realized with highly patronized services in high volume corridors -- a market limited to high volume, generally densely developed corridors.
GHG/Passenger Mile for Different Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Occupancy</th>
<th>Lbs of GHG/PMT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto, SOV</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>SUV, average</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>Transit Bus, average</td>
<td>8.80</td>
<td>0.71</td>
</tr>
<tr>
<td>Auto, Average</td>
<td>1.57</td>
<td>0.58</td>
</tr>
<tr>
<td>Carpools, average</td>
<td>2.10</td>
<td>0.47</td>
</tr>
<tr>
<td>Amtrak</td>
<td>20.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Rail Transit, average</td>
<td>22.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Motorcycles, average</td>
<td>1.20</td>
<td>0.37</td>
</tr>
<tr>
<td>Commuter Rail, average</td>
<td>31.30</td>
<td>0.36</td>
</tr>
<tr>
<td>Vanpools, average</td>
<td>6.10</td>
<td>0.21</td>
</tr>
<tr>
<td>Walking and Biking</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* PMT = Passenger Mile Travelled
Land Use Effect on GHG is Modest – and Depends on Assumptions

“Growing Cooler” finds compact development can achieve 3.5-5% reduction in transportation GHG, 2007-2050
GC’s assumptions of land use change are very aggressive:
 67% of all development in place in 2050 will be constructed or rehabbed after 2005
 60-90% of that development is compact (comparable to 13.3 housing-units per acre)
Compact development has 30% less VMT than very sprawling development
“Moving Cooler” finds smaller GHG effect, even with 90% compact land use for future urban development
• 2009 TRB Study finds <1% to 11% household GHG reduction by 2050, depending on aggressiveness of assumptions
 – Evaluates effect of compact development on travel, energy use, and CO2 emissions
 – Disagreement among committee members about feasibility of changes in development patterns and public policies necessary to achieve high-end of estimated reductions

• Recommendations
 – Policies that support compact, mixed use development should be encouraged
 – More carefully designed studies of the effects of land use patterns on VMT, energy use, CO2 emissions are needed to implement compact development more effectively

California SB375 Update

• Draft goals for GHG reductions per capita released
• Final goals to be set in September
• Ranges were identified for the four largest MPOs; other MPOs will not need goals
• Range from 5-10% reduction in per capita GHG required from 2005 to 2020 with a final number to be announced by Sept.
• Existing RTPs in four largest MPOs get close to these reductions.
Less VMT via Land Use: The 8 “D”s

1. Diversity (mix) of land uses
2. Density of urban form – e.g. UGB
3. Design - quality of the (ped/bike) environment
4. Destination accessibility – O/D links
5. Distance to transit
6. Development scale (site, sector, municipality, region)
7. Demographics
8. Demand Management
• Evaluated non-technology transportation strategies for (a) GHG reductions and (b) cost-effectiveness in reducing GHG

• Analyzed 46 individual transportation strategies and 6 “bundles” of strategies

• The 46 individual strategies: pricing strategies, transit strategies, land use strategy, operational strategies, freight strategies, no motorized strategies, regulatory strategies, bottleneck/capacity strategies, etc.
Individual strategies achieve GHG reductions ranging from <0.5% to 4.0% cumulatively 2010-2050, compared to on-road baseline GHG

- 15,186 mmt - carbon pricing equiv to $2.71/gallon
- 3,361 mmt – VMT fees equiv to $2.53/gallon
- 2,428 mmt – speed limit reductions
- 2,233 mmt – PAYD auto insurance (100%)
- 1,815 mmt – eco-driving by 20% of drivers
- 1,445 mmt – at least 90% of new urban development is compact, with high quality transit
- 1,241 mmt – congestion pricing fully implemented in 120 metro areas at 65 cents/mile
- 575 mmt - $1.2 trillion transit expansion
- 352 mmt – combination of 10 freight strategies
“Maximum” strategy bundle can reduce cumulative on-road GHG by 16% compared to on-road baseline, over 40 years

- Tolls imposed in 2010 at 5 cents/mile on national Interstate system
- Congestion pricing at 65 cents/mile in 120 metro areas
- $400 permit fee to park on neighborhood streets
- $1.2 trillion transit expansion
- Bike lanes every 1/4 mile
- New and increased parking fees
- 90% of new urban development is compact, in dense Census tracts, with high quality transit
- Heavier and longer trucks allowed (up to 139,000 lbs)
- Eight more freight strategies
- Eco-driving by 20% of drivers
- Speed limit reductions
- Top 200 bottlenecks improved to LOS D
Potential for 10-20% LDV GHG reduction by:

- Managing speed (35-55 MPH is optimal)
- Speed limits/enforcement (could reduce fuel use 2-4%)
- Eliminating bottlenecks
- “Active” traffic management to smooth traffic flow
- Improving signal timing (could reduce 1.315 MMT CO₂/yr)
- Roundabouts (multiple benefits)
- Reducing car and truck idling
- Work zone management to smooth flow
- Encouraging eco-driving
EcoDriving

- EcoDrivers can reduce fuel and CO2 by up to 15% through smart driving and vehicle maintenance.
- If 50% of drivers practiced EcoDriving, CO2 would drop by 100 million tons annually (the equivalent of heating and powering 8.5 million households).
- Pilot in Denver with 300 drivers achieved 10% fuel reduction and similar GHG reduction.
- Useful for HDV, MDV, and LDV drivers.
- Major push in Europe as GHG strategy.
- Aided by dashboard displays of real-time MPG.
EcoDriving

- EcoDrivingUSA™ -- nationwide effort to increase overall vehicle fuel economy and preserve the environment
- Partnership of Governors, auto industry, environmental groups
- Website:
 - Be an EcoDriver
 - EcoCalculator
 - EcoDriving Quiz
 - Virtual Road Test
 - Is Your Community EcoDriving?
 - Educational Tools
 - News and Events
 - Join the EcoDriving Movement
 - Link this website on your blog or site
- For more information and to join the EcoDriving movement contact: Seena Faqiri at 202.326.5518 or sfaqiri@autoalliance.org.
Congestion Impacts on GHG

• Studied congestion and impact on CO2, used detailed energy and emissions models linked to real-world conditions

• CO2 emissions can be reduced with three strategies
 – Reduce severe congestion, allow traffic to flow at higher speeds
 – Reduce excessively high free-flow speeds to more moderate conditions
 – Eliminate accel/decel events associated with stop and go traffic in highly congested conditions

• Author: Dr. Matthew Barth, et al., May 2008

• http://www.its.uci.edu/its/whatsnew/barth2.pdf
Effect of Speed on GHG

Traffic Operation Strategies To Reduce CO₂

Cost of Congestion

Cost of Wasted Time and Wasted Fuel Due to Highway Congestion
(Billions of 2007 Dollars)

Source: Texas Transportation Institute

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Operational Strategies to Reduce GHG

• Significant sources of GHG and energy use
• Many opportunities to reduce GHG and energy cost from current system:
 – LED traffic lights
 – Low carbon pavement
 – Energy-efficient buildings
 – Reduced roadside mowing
 – Solar panels on ROW
 – Alt fuels and hybrid vehicles in DOT fleets
 – Alt fuel buses
Began 2002, 10-year project
Climate Trust funded project and pays for CO2 offsets from project
Improve signal timing on 17 major arterials
 - Optimize traffic flow
 - Reduce idling, acceleration, CO2 emissions and emissions from criteria pollutants
Model for traffic signal offset projects

Solar Panels for Highway Lighting – Oregon DOT

- 594 solar panels produce 122,000 KWH/year to light interchange
- Avoids nearly 43 metric tons of GHG/year from normal electricity
- $1.28 M project in operation for over a year
- PPP of OR DOT, PGE, and US Bank, using state and federal tax credits
- Could be a model for other DOTs
- ORDOT planning 2 additional projects
- www.oregonsolarhighway.com
• Pilot established in 2008
• Assess how much carbon can be sequestered by native vegetation in the NHS right-of-way
• Determine feasibility of carbon credit sales by state DOTs and estimates of amount of revenue potential for state DOTs
• Final report available
 – Estimate of NHS ROW in each state
 – Highway carbon sequestration estimator
• **Webinar Wednesday, July 14** to discuss findings
Goods Movement and GDP

For every trillion dollar increase in GDP, we expect an additional 242 billion ton-miles.

Source: Corbett and Winebrake, 2009.

• Black carbon is a major contributor to climate change, diesel engines a primary source of BC
• Black carbon particles absorb sunlight, generate heat in the atmosphere, warms the air
• Every gallon of diesel emits 22 pounds of CO2
• CO2 has long atmospheric lifetime; black carbon remains in atmosphere only a few weeks
 – Reducing black carbon provides immediate reduction in the rate of warming along with public health benefits.
• Freight strategies that impact diesel engines reduce black carbon and PM and provide immediate benefits
Truck GHG is Growing Faster than Other Transportation GHG

GHG Emissions by Transportation Mode
(Million Metric Tons CO2 Equivalent)

Source: History: Transportation Energy Databook 28th Edition
Projection: Annual Energy Outlook 2009 Updated Reference Case d041409a
Freight GHG – Barges and Rail

Source: Texas Transportation Institute and Center for Ports and Waterways
Freight Rail Can Relieve Congestion

Cumulative Reduction in GHG Emissions if 10% of Long-Haul Freight That Moves by Truck Moved by Rail Instead (million tons)

For simplicity, data assume constant 110 ton-miles per gallon for trucks and 496 ton-miles per gallon for rail through 2020 and that GHG emissions consist solely of 22.4 pounds of CO2 per gallon of diesel. Based on truck movements more than 500 miles in length as forecast by AASHTO.
Rail Fuel Efficiency has Improved

Since 1980, Rail Freight Volume Has Nearly Doubled But Rail Fuel Consumption Is Only Slightly Higher (Index 1980 = 100)

In freight service. **Revenue ton-miles. Data are for Class I railroads. Source: AAR.
Freight GHG Strategies in State Climate Action Plans

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Anti-idling programs</td>
<td>• Efficient Intermodal Facilities</td>
</tr>
<tr>
<td>• Truck stop electrification</td>
<td>• ECOdriving</td>
</tr>
<tr>
<td>• Speed limit enforcement</td>
<td>• Incentives to retire older trucks</td>
</tr>
<tr>
<td>• Freight villages/consolidation centers</td>
<td>• Freight logistics improvements</td>
</tr>
<tr>
<td>• Feeder barge container service</td>
<td>• Shifting freight from truck to rail</td>
</tr>
<tr>
<td>• Bottleneck reduction</td>
<td>• Hybrid power trucks</td>
</tr>
<tr>
<td>• Traffic flow improvements</td>
<td>• Low-viscosity lubricants</td>
</tr>
<tr>
<td>• Pre-clearances at scale houses</td>
<td>• Single wide-base tires</td>
</tr>
<tr>
<td>• Truck driver training</td>
<td>• Automatic tire inflation systems</td>
</tr>
<tr>
<td>• EPA SmartWay up-grade kits & loans & diesel retrofits</td>
<td>• Retrofits - PM and “Black carbon” reduction technologies</td>
</tr>
<tr>
<td>• Improvements to highway grade crossings</td>
<td>85% reduction in PM</td>
</tr>
</tbody>
</table>

Detailed info available in NCHRP 20-24(59), Appendix C
“Best Practices Guidebook for GHG Reductions in Freight Transportation”

- NC State University report to US DOT, 2007
- Covers trucks, freight rail, marine, air freight, pipeline
- Identifies 33 “best practices” for reducing truck GHG (plus 26 for other freight modes)
- All 33 could reduce truck GHG in 2025 by 12% below 2003 (compared to 67% increase in truck GHG if best practices are not implemented)
Diesel Retrofits Reduce PM and Black Carbon

- On-road diesel truck retrofits reduce PM 99% = 2007 EPA standards and also reduce black carbon
- Locomotive retrofits reduce PM and black carbon
 - Achieve over 76% PM and 25% fuel efficiency
- Cost-effective way to reduce emissions and save energy immediately.
- Retrofits of construction equipment, state fleets and locomotives could be promising as state DOTs work to reduce emissions to meet potential planning requirements
The Diesel Locomotive Retrofit Process

- Each existing locomotive is stripped from the deck up, removing the large, single diesel engine
- Three smaller, ultra-clean diesel generators are fitted onto the platform, along with control and operating equipment
- An immediate emissions reduction of 86% ozone precursors, 76% Particulate Matter, and a 25% fuel savings, with a corresponding 25% reduction in greenhouse gas CO$_2$ emissions, is realized following this diesel retrofit
- Very cost-effective CMAQ project
Colorado Actions

- Bicycle and Pedestrian directive
- Land Use and transportation integration study
- Mileage Based User Fee: Pilot Study
- Transportation Demand Management Program
- Off-Road Fleet Retrofit Demonstration Project
- Major transit investments
- Public education and outreach program
- Innovative car-share program
McKinsey: Available Technologies can Reduce 3 Billion Tons GHG/Year at < $50/ton (compare to projected 9.7 billion tons economy-wide in 2030)

The analysis found that abatement options are highly fragmented and widely spread across the economy. Almost 40 percent of abatement could be achieved at “negative” marginal costs, i.e., the savings over the lifecycle of these options would more than pay for the incremental investment, operating, and maintenance costs. Realizing the potential of many negative-cost options would require overcoming persistent barriers to market efficiency.
European View of Transport GHG Strategies
(European Council of Ministers of Transport, 2006)

• “The most effective measures available include fuel taxes, vehicle and component standards, differentiated vehicle taxation, support for eco-driving and incentives for more efficient logistic organization, including point of use pricing for roads.”

• “More integrated transport and spatial planning policies might contain demand for motorized transport.”

• Mode shifts … cannot … form the corner-stone of effective CO2 abatement policy and the prominence given to modal shift policies is at odds with indications that most modal shift policies achieve much lower abatement levels than measures focusing on fuel efficiency.”

• “Ultimately higher cost energy sources …. will be required if there are to be further cuts in transport sector CO2 emissions.”
Many strategies are needed to reduce transport GHG. No silver bullet. Will need full mix of strategies including:

- Maximize energy efficiency of current vehicle technology
- Decarbonize vehicles and fuels world-wide
- Adopt pricing measures to reward conservation and tech innovation
- Push “eco driving” and system/speed management
- Adopt more efficient land use
- Support carpools & vanpools, biking, walking, transit use, trip chaining, telecommuting
- Adopt low carbon, energy-conserving strategies in construction, maintenance, and agency operations
- Retrofit legacy fleets to reduce PM and black carbon
- Implement wide-ranging freight technology and logistics improvements
III. How Can State DOTs Mitigate GHG Emissions?
IV. Climate Adaptation for Transportation
Why Transportation Agencies Should Plan for Adaptation

- **Sea level rise & storm surges**
 - Destruction of bridges
 - Erosion & permanent inundation of roads
 - Disruption of evacuation routes & road network
 - Bridge clearance limitations

- **Other types of impacts**
 - Increased flooding
 - Pavement and rail buckling
 - Increased flooding
 - More severe inland storms
 - Increased maintenance

Source: http://mceer.buffalo.edu/research/Reconnaissance/Katrina8-28-05/05BiloxiBay1/09lg.jpg
"Actions by individuals or systems to avoid, withstand, or take advantage of current and projected climate changes and impacts. Adaptation decreases a system’s vulnerability, or increases its resilience to impacts."

--Pew Center on Climate Change
Climate change will affect every mode of transportation and every region in the United States, and the challenges to infrastructure providers will be new and often unfamiliar.

State and local governments and private infrastructure providers will need to incorporate adjustments for climate change into long-term capital improvement plans, facility designs, maintenance practices, operations, and emergency response plans.
• **Design standards** will need to be re-evaluated and new standards developed as progress is made in understanding future climate conditions and the options for addressing them.

• **Transportation planners** will need to consider climate change and its effects on infrastructure investments. Planning timeframes may need to extend beyond the next 20 or 30 years.

• **Institutional arrangements for transportation planning and operations** will need to be changed to incorporate cross jurisdictional and regional cooperation.
Coastal states are most concerned	Colorado
Multi-sector reviews of vulnerability	California
Often led by resource agencies	Pennsylvania
State DOT role -- significant to minor	Maryland
Still early on the learning curve	Washington
	Hawaii
	Alaska
	Florida
	Massachusetts
	North Carolina
State Climate **Adaptation** Plans

[Map of the United States showing states with adaptation plans in progress or completed, and states where adaptation plans are recommended in C.A.P.*]
Implications for Facilities Design

- Changes in bridge height
- Changes in bridge foundation and superstructure
- Changes in materials specifications
- Changes in suspended and cable-stay bridges to withstand more severe wind and turbulence
- Changes in culvert design, capacity, and location
- Changes in slope design
- Changes in pavement drainage systems
Implications for Maintenance/Operations

- Pavement rutting and rail buckling
- Longer construction season
- Closures and detours due to rock slides, soil erosion, flooding
- Speed reductions
- Flooding of culverts
- Change in weight restrictions
- More grass cutting/less snow plowing
- Work crew limitations during severe heat periods
Implications for Environmental Reviews

- In NEPA process, sponsor must consider project vulnerability to future climate change
- US ACE may raise new issues in wetland permitting due to climate impacts
- USCG may raise climate impacts in bridge permitting
- DOI may raise issues & require more analysis for ESA, due to uncertainty of climate impacts on species
• 9 regions (6 continental US, Alaska, Hawaii, Caribbean)
• Projected changes by region:
 – Annual, Seasonal Temperature (change in °F)
 – Seasonal Precipitation (% change)
 – Where information exists:
 • Sea level rise
 • Storm activity

• Regional focus, also includes information at the international, national and State and local levels (as available)
FHWA Climate Change Effects Report

Three sections
• Report
• Regional maps (Appendix B)
• Climate Effects Typology (Appendix C)
FHWA Climate Change Effects Report

- Provides information on climate change projections for transportation decision makers
- Summarizes current science
 - Science is progressing, expect information to improve over next 3-5 years
- Short, medium and long term
- Based on low and high GHG emission scenarios
- Assistance from Climate experts -- NOAA, USGS, DOE
Model identified potential impacts of climate change of the UK road network
- Resulted in a climate change adaptation strategy
- Strategy addresses design, construction, and maintenance
- Includes a risk appraisal for all operations
Summary

- **All modes** of transportation threatened
- **Affects all transportation functions** – planning, programming, environment, location, design, construction, operations, emergency planning – and budgeting
- **Low lying coastal areas especially vulnerable**
- **Risk assessment and prioritization** is key
- Transportation planners need to **be aware of and adapt to climate change impacts** on our transportation infrastructure
- Looming in future: **where not to build or re-invest?**
V. Planning and Policy Issues
Federal Climate Legislation and Policy are Taking Shape

- AASHTO position
- EPA proposed “endangerment” finding
- (section 202(a) of CAA
- “Cap and Trade” bills
- 2010 Senate Bill - Kerry-Lieberman
AASHTO Position on Climate Change

- Major R&D to decarbonize vehicles/fuels (comparable to “man on the moon”)
- Reduce VMT growth to 1%/year
- Double transit ridership
- Increase intercity passenger rail
- $100 M/year Federal funding for coordinated land use/transportation planning
- Oppose GHG conformity requirement
- See AASHTO “Real Transportation Solutions” at http://www.climatechange.transportation.org/
Clean Air Act – EPA Endangerment Finding

- EPA can regulate GHG under existing Clean Air Act (CAA)
- December 2009 EPA finding:
 - Atmospheric concentrations of GHG “endanger” public health and welfare (per CAA section 202(a))
 - Emissions of GHG from new motor vehicles “contribute to” air pollution which is endangering public health and welfare
- Based on this finding EPA is obligated to regulate GHG (e.g., GHG standards for autos)
- GHG conformity possible, but not likely
- Endangerment finding challenged by several states
• House: Passed Waxman-Markey bill on the floor in 2009
• Senate: Boxer-Kerry bill reached floor in 2009, then stalled
• Senate: Kerry-Lieberman “discussion draft” bill released May 12, 2010
• President Obama: Strongly supports cap-and-trade legislation
Federal Legislation –
Major Elements of Climate Bills

• **Cap-and-Trade**
 – Sets “cap” on GHG emissions; cap declines over time

• **Energy Production**
 – Provides incentives and other support for production of renewable energy (and maybe nuclear, oil & gas)

• **Energy Efficiency**
 – Provides incentives and tighter regulations to promote greater efficiency – buildings, appliances, vehicles, etc.

• **Transition Assistance**
 – Provides assistance to ease impact of higher energy prices on consumers and U.S. industries

Source: Bill Malley, Perkins Coie
How a cap-and-trade program works:

- Set a cap on total GHG emissions, and reduce it over time
 - 17 to 20% reduction by 2020
 - 83% reduction by 2050
- Issue "allowances" to emit GHGs within the cap
 - Some allowances are auctioned; others distributed free
- "Allowances" are an economic asset that can be traded
 - Receiving a free allowance is like receiving dollars
- “Offsets” can be purchased in lieu of allowances
 - An offset is obtained by paying for a reduction made by sources outside the cap, including sources in other countries
 - Example: pay to avoid deforestation in a developing country

Source: Bill Malley, Perkins Coie
2010 Senate Bill: Kerry-Lieberman – American Power Act

• “Discussion draft” released May 12, 2010
• Calls for reductions from 2005 baseline
 – 17% by 2020
 – 42% by 2030
 – 83% by 2050
• Sets national GHG emissions cap
 – Transportation fuels under the cap
 – Tptn fuel producers and importers would purchase emissions allowances at a fixed price ($12 - $25/ton carbon)
 – Tptn carbon price would increase at 3% over inflation/year)
• Imposes transportation planning requirements on states & large MPOs
• Many, many other provisions, affecting all sectors
How much revenue would K-L provide for transportation?

- K-L doesn’t allocate dollars to transportation – but does allocate “percentages of allowances” which can be sold and converted into dollars
- Value of allowances will fluctuate but can be estimated
- K-L caps the value of allowances for transportation at $6.2 billion per year (without the cap, the value could be higher)
- AASHTO/APTA estimate that 70-90% of revenues from transportation fuels are diverted to other purposes (deficit reduction, transition assistance to households, R&D, etc.)
How could the K-L allowances revenue be used for transportation?

$6.25 billion annually -- maximum

- One-third to Highway Trust Fund up to $2.5 b/yr
- One-third to TIGER grant program $1.875 b/yr
- One third for transportation planning and implementation $1.875 b/yr
How could the K-L allowances revenue be used for transportation?

States and large MPOs (over 200,000 population) must:

- Develop GHG targets and strategies
- Integrate GHG targets and strategies into plans
- Demonstrate progress in stabilizing and reducing GHG emissions to contribute to achievement of national targets

USEPA is to:

- Issue regulations for standardized emissions models and methods

USDOT is to:

- Determine whether state and MPO plans are “likely to achieve” GHG reduction targets
- Provide performance awards ($) for states with approved plans
- Issue regulations for GHG planning (overlaps with EPA regs)
Federal Climate Legislation – Impact on Transportation Fuel Prices

• How would the House and Senate bills affect the price of transportation fuels?
 – EPA makes two key assumptions:
 • Relatively low cost to adopt new technologies that reduce GHG emissions, such as carbon capture and sequestration (CCS)
 • Relatively widespread use of "offsets"
 – Without these assumptions, prices could be much higher.
 – EPA has not yet released an estimate of the gasoline price impacts of the 2010 Senate bill

Source: Bill Malley, Perkins-Coie
<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA Projection</td>
<td>$0.14</td>
<td>$0.24</td>
<td>$0.69</td>
</tr>
<tr>
<td>CRA: Base Case</td>
<td>$0.19</td>
<td>$0.38</td>
<td>$0.95</td>
</tr>
<tr>
<td>CRA: "Low-Cost"</td>
<td>$0.17</td>
<td>$0.34</td>
<td>$0.84</td>
</tr>
<tr>
<td>CRA: "High-Cost"</td>
<td>$0.36</td>
<td>$0.71</td>
<td>$1.82</td>
</tr>
<tr>
<td>CRA: "No International Offsets"</td>
<td>$0.52</td>
<td>$1.08</td>
<td>$2.79</td>
</tr>
</tbody>
</table>

House and Senate Bills Have Small Impact on Transportation GHG

EPA projects that the price signal from cap-and-trade would have little effect on transportation emissions

"The increase in gasoline prices that results from the increase in the carbon price ... is not sufficient to substantially change consumer behavior in their vehicle miles traveled or vehicle purchases"

"The relatively modest indirect price signal on vehicle manufacturers from this particular cap-and-trade policy creates little incentive for the introduction of low-GHG automotive technology."

Source: http://www.epa.gov/climatechange/economics/economicanalyses.html
Federal Legislation – Transportation Planning Provisions (proposed)

- **TARGETS AND STRATEGIES**: States and TMA MPOs must develop GHG reduction targets and strategies, as part of transportation plans.

- **PROGRESS**: States and TMA MPOs must “demonstrate progress in stabilizing and reducing” GHG emissions.

- **METHODOLOGIES**: EPA must issue regulations on transportation GHG goals, standardized models, methodologies, and data collection.

- **CERTIFICATION**: US DOT shall not certify state or MPO plans that fail to “develop, submit or publish emission reduction targets and strategies.”

- **PERFORMANCE REQUIREMENTS**: US DOT must establish requirements, including performance measures, “to ensure that transportation plans… sufficiently meet the requirements…, including achieving progress towards national transportation-related GHG emissions reduction goals.”
Transportation Planning – Many GHG Issues and Implications

- GHG planning will be impacted by both state and federal policies
- Both state DOTs and MPOs will be affected
- Inventories of transportation GHG will probably be required
- GHG reduction targets will probably be required
- Methodologies to predict GHG for different plans and strategies will be needed
- Many Clean Air Act planning issues will carry over into GHG planning – modeling limitations, induced demand, VMT reduction expectations, uncertainties about travel behavior, land use expectations, etc.
- A major new issue – high degree of uncertainly about future potential new technology and fuels to reduce GHG
- Another key issue -- whether/how to include “upstream” and “life cycle” GHG of transportation
• Draft issued by CEQ on February 18, 2010
• Comments were due: May 24, 2010
• Proposal:
 – Evaluate proposed actions that are reasonably expected to cause direct emissions of 25,000 metric tons or more of CO2-equivalent on an annual basis, and,
 – Consider impact of climate change on the project
• AASHTO provided extensive comments
CEQ Proposal: GHG Emissions to be Considered on a Project Level

- Cumulative emissions over the life of the project
- Emissions from vehicles using the highway
- Construction-related emissions
- Up-stream emissions from fueling cycle (drilling, refining, shipping, etc.) and vehicle cycle
- Others?
- Life-cycle emissions?
- Emissions effects of land use changes, roadway maintenance and lighting, etc.
25,000 metric tons = 43,000,000 VMT/year or about 120,000 VMT/day

- Action that would increase VMT by **120,000/day** *(NEW VMT) would trigger analysis*, with all else being equal (e.g. speeds, congestion, fleet mix, etc.)
NEPA: Projects Potentially Triggering GHG Analysis under CEQ Proposal

- New 6-lane bridge,
 - 1.2 miles long, 100,000 ADT, 70 mph (in 2020, 114,400 ADT)
- New 4-lane highway,
 - 3.5 miles long, 40,000 ADT, 70 mph (2020, 45,800 ADT)
- New 2-lane highway,
 - 6 miles long, 25,000 ADT, 60 mph (2020 ADT 28,600)
- Widening existing highway –
 - 6 to 10 lanes, 13 miles, speeds increase from 60 to 70 mph (2020 volumes could increase by 14%)
- Transit Projects - Light-Rail, Heavy-rail, Inter-city Rail?
NEPA: Future Roadway GHG Emissions

- 25,000 tons is based on *annual emissions over life of the project*
- **Future fuel economy** projected by US DOE
 - 2020 fleet - ~14% more fuel efficient than 2010 fleet; raises VMT threshold to 137,000 VMT/day
- **Upstream and downstream emissions?**
 - Fuel supply (well to pump) and vehicle manufacture and disposal included in EPA national inventories
 - Proposed approach would add 40% to emissions generated to account for upstream and downstream emissions
 - 120,000 VMT becomes 86,000 VMT **IF** 40% and upstream/downstream emissions included
Methodologies to quantify construction emissions are old. But, based upon NY procedures, 25,000 metric tons could result from 30-50 lane-miles of new road work. Emissions vary widely.

Construction emissions would be annualized over life of project.
NEPA: Construction GHG Emissions

Source: NYSDOT

<table>
<thead>
<tr>
<th>Type of Improvement</th>
<th>Construction Energy Consumed per Rurala-Lane-Mile (10^9 Btu/mi)</th>
<th>CO2, tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>New construction</td>
<td>12.70</td>
<td>637</td>
</tr>
<tr>
<td>Relocation</td>
<td>10.50</td>
<td>526</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>5.20</td>
<td>261</td>
</tr>
<tr>
<td>Restoration and rehabilitation</td>
<td>2.30</td>
<td>115</td>
</tr>
<tr>
<td>Resurfacing</td>
<td>0.75</td>
<td>38</td>
</tr>
<tr>
<td>Major widening</td>
<td>5.00</td>
<td>251</td>
</tr>
<tr>
<td>Minor widening</td>
<td>1.90</td>
<td>95</td>
</tr>
<tr>
<td>New Bridges</td>
<td>192</td>
<td>9624</td>
</tr>
<tr>
<td>Bridge Replacement</td>
<td>222</td>
<td>11128</td>
</tr>
<tr>
<td>Major rehabilitation</td>
<td>134.4</td>
<td>6737</td>
</tr>
<tr>
<td>Minor rehabilitation</td>
<td>11.91</td>
<td>597</td>
</tr>
</tbody>
</table>

a Increase rural energy consumption by 20% for urban construction
NEPA: Also Consider Clime Impacts on Project

- Climate Adaptation Planning
 - Discuss *climate change effects that should be considered in project development* such as flooding in low lying areas, development of coastal infrastructure
 - Also discuss *reasonably foreseeable future conditions* with no action
AASHTO Comments

• Planning process is the appropriate venue for developing and implementing GHG reduction strategies not project level
• Project-level analysis not meaningful
 – Inadequate tools
 – Global emissions vs project-level analysis disconnect
 – Basis for 25,000 metric ton threshold?
• Major emphasis on adaptation needed in transportation policy
NEPA: Bottom Line

It all depends…

– What emissions sources are included in total?
– How are direct and indirect emissions defined?
– Life cycle emissions?
– What analysis year (or years) are used?
– Speed assumptions?
– Fleet assumptions?
– New VMT vs. VMT shifted from elsewhere?
– Many questions…
Recent History – Court Rulings on NEPA/GHG

3 cases **overturned** FONSI/EA/EIS for lack of climate analysis:
- Center for Biological Diversity et al. v. NHTSA
- Mid States Coalition for Progress v. Surface Transportation Board
- Border Power Plan Working Group v. DOE

4 cases **upheld** lack of climate analysis or sufficiency of analysis:
- Audubon v. DOT, 2007
- Friends of the Earth v. Mosbacher, 2007
- Mayo Foundation v. Surface Transportation Board, 2006
California CEQA GHG Requirements

• CEQA amended March 2010
 – Add GHG emissions to list of environmental impacts to be analyzed
 – Recommends analytical approach similar to air quality analysis
 – Significant discretion to lead agencies
 – Consistency with plans (e.g. AB32 and SB375) heavily emphasized
California: Consider Project and Cumulative Effects

• Focus on impact of project as part of larger circulation system vs at a specific location
• Project level requirement added
 – No project thresholds
• Qualitative or quantitative analysis allowed
 – Encourage to quantify if possible
• Lead agency to determine significance
 – Mitigate where significant
 – Consistency with AB32 and SB375 emphasized
The GreenSTEP Model is a framework for analyzing the impact of transportation decisions on environmental outcomes. It operates at both the individual household level and the aggregate level.

At the individual household level:
- **Synthetic Household Generation**
- **Urban area land use and transportation system characteristics**
- **Household vehicle ownership**
- **Household vehicle travel**
- **Household vehicle characteristics**
 - Adjust household income due to travel cost change

At the aggregate level:
- **Demand management program adjustments to VMT**
- **Heavy vehicle VMT**
- **MPG adjustments due to congestion**
- **Fuel consumption by type**
- **CO2 equivalent emissions by fuel type (including well to wheels)**

This model allows for a thorough examination of how changes in household travel patterns can affect overall transportation-related emissions and resource consumption.
GreenSTEP Inputs

- Demographic changes
- Relative amounts of development occurring in urban and rural areas
- Metropolitan and other urban area densities
- Urban form
- Amounts of metropolitan area public transit service
- Highway capacity
- Vehicle fuel efficiency
- Vehicle ages
- Electric vehicles
- Fuel & carbon pricing
- VMT pricing
- Demand management
- Effects of congestion on fuel economy
- Carbon content of fuels – including well to wheels impacts
- CO2 production from electrical power use for transportation
GreenSTEP can Analyze Many Different Strategies

Fuel Economy & Costs Urban Planning Vehicle Tech & Fuel

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Summary

• Prepare for federal legislation and requirements
• DOTs may be expected to reduce transportation GHG by 60-80% by 2050
• Many state climate action plans include “aspirational” transportation elements that have not been thoroughly analyzed or vetted
• VMT reductions may be expected or required
• Lower VMT and more fuel efficient cars will exacerbate the transportation revenue dilemma – new revenue sources will be needed
Summary (continued)

- Transportation planning process will need to consider GHG emissions and climate change impacts
- CEQ Draft Guidance will impact required NEPA Analysis
- Consider both
 - impact of project on GHG; and
 - impact of climate change on project
- Tools will be needed to evaluate GHG emissions
- Documentation will be important
- Mitigation actions can be helpful
- Learn from other states experiences with litigation/documentation
VI. Discussion: Strategies for Planning and Project Selection
VII. Discussion: Opportunities for Collaboration
VIII. Report back Collaboration Discussion
Resources

- AASHTO: http://climatechange.transportation.org/
- Intergovernmental Panel on Climate Change (IPCC): http://www.ipcc.ch/
- The Pew Center on Global Climate Change: http://www.pewclimate.org/
- EPA Climate Change Program http://www.epa.gov/climatechange/
Resources – Key Documents

- AASHTO, “Primer on Transportation and Climate Change,” 2008
- Pew Center on Climate Change, “Climate Change 101”
AASHTO Climate Change Steering Committee: CCSC acts as a focal point and coordinating body for AASHTO’s activities related to climate change. CCSC members act as the focal point for AASHTO on climate change policy issues and provide oversight and guidance to AASHTO’s Climate Change Technical Assistance Program.

AASHTO Technical Assistance Program on Climate Change: This is a new, voluntary program that provides timely information, tools and technical assistance to assist AASHTO members in meeting the difficult challenges that arise related to climate change.

For more information on AASHTO’s Climate Change Steering Committee and Climate Change Technical Assistance Program, please contact:
Caroline Paulsen at AASHTO (202) 624- cpaulsen@aashto.org
Contact Info for Workshop Instructors

Cynthia J. Burbank
Parsons Brinckerhoff
burbank@pbworld.com
202-661-9262

Sarah J. Siwek
Sarah J. Siwek & Associates
ssiwek@aol.com
310-417-6660 x224
Air Quality Primer for Colorado

What are the Colorado pollutants of concern?

How are pollutants formed and where are they a problem?

What can Colorado expect in the future?
The Colorado Condition

Highly variable weather

Daily/seasonal changes
• 30-40° changes not uncommon
• High winds common

High altitude
• Mountainous terrain
• Eastern plains

Low precipitation
• Rain shadow
Pollution Sources

1. Stationary
 • Point (power plants, oil/gas wells)
 • Area (gas stations, dry cleaners, residential heating, fireplaces)

2. Mobile
 • On-road (cars & trucks)
 • Off-road (planes, trains, construction & farm equipment)
Carbon Monoxide Maintenance Areas
Denver, Ft Collins, Greeley, and Colorado Springs
PM$_{10}$ Maintenance Areas
Denver and six rural communities
8-hr Ozone Non-attainment Area
Carbon Monoxide

8-hour Carbon Monoxide --- 2nd Maximum
Denver metro area

8-hr. level of standard = 9 ppm

Year

Parts per million

Lines represent:
- Welby
- NJH
- Carriage
- Denver CAMP
- Auraria/Speer
- Arvada
Particulate Matter - PM$_{10}$

PM$_{2.5}$

Human Hair
- 70 μm average diameter

PM$_{1.0}$
- ≤2.5 μm in diameter

PM$_{1.0}$
- ≤10 μm in diameter

90 μm in diameter
Fine Beach Sand
Ground-level Ozone

Ozone is not emitted

Ozone “precursors” are emitted by various sources

- **Volatile Organic Compounds (VOCs) (hydrocarbons)**
 - Oil & gas operations
 - Motor vehicles / fuels
 - Lawn care equipment
 - Consumer products
- **Nitrogen Oxides (NOx)**
 - Motor vehicles, other engines
 - Power plants

Directly effects respiratory system
children, elderly, even healthy adults
Prime conditions include intense sunlight, high temperatures, persistent high pressure, light winds & little moisture
US Counties Violating Proposed 60 - 70 ppb Ozone Standards

- 515 counties violate 0.070 ppm
- 93 additional counties violate 0.065 ppm for a total of 608
- 42 additional counties violate 0.060 ppm for a total of 650

Transported Ozone

[Map showing counties violating ozone standards]
Ozone Violations Expected at 65 ppb standard

Note: Only sites meeting QA requirements under 40CFR58 are depicted.
Transportation Conformity

- Established in Clean Air Act (amended in 1990)

- Conformity Determinations required in areas designated as Nonattainment & Maintenance

- Ensure projects in RTP & TIP don’t worsen air quality through transportation or “mobile sources” (cars, trucks, etc.)

!! Total mobile source emissions for future staging and attainment years cannot be higher than the pollutant budgets
Budgets are set for each pollutant

EMISSION BUDGET (Tons per day)

Mobile Source Emissions from the overall regional transportation network in the RTP/TIP

√ Conformity is demonstrated

× Fail

Mobile Source Emissions from the overall regional transportation network in the RTP/TIP
What is Colorado’s air quality future?

Create programmatic outreach solutions before EPA controls are mandated:

- To educate and inform the public
- To provide tips and tools for the public and local agencies to voluntarily lower emissions
- Develop programs with air quality shared-benefits
- Not just ozone precursors, PM10 or DPM emissions reductions, but also GHG emission reductions