Introductory Remarks:

Kate Kurgan
Program Manager for Environment Center for Environmental Excellence by AASHTO
Stormwater and Transportation Webinars

Sponsored by:

• Center for Environmental Excellence by AASHTO

in Cooperation with:

• Federal Highway Administration and

• Federal Transit Administration
• Construction Effluent Guidelines – Numerical Limits are Coming (April 28th, 2011)

Presentation and recorded webinar available on the Center website http://environment.transportation.org/
Stormwater Community of Practice

- Construction Stormwater Management
- Effluent Limitations Guidelines
- TMDLs
- EPA Post-Construction Stormwater Control Rulemaking
- Source Control
AASHTO PRACtITIONER’S HANDBOOK

13
June 2006

DEVELOPING AND IMPLEMENTING A STORMWATER MANAGEMENT PROGRAM IN A TRANSPORTATION AGENCY

State departments of transportation (DOTs) face increasing pressure to reduce pollution in urban stormwater drainage. This handbook presents recommendations for developing and implementing an effective stormwater management program that complies with National Pollutant Discharge Elimination System (NPDES) regulations.

Issues covered in this handbook include:
- Development and implementation of a stormwater management program
- Clean Water Act (CWA) and the NPDES program
- State and local stormwater regulations
- Conducting a Program Effectiveness Assessment (PEA)
- Developing a stormwater management plan (SWMP)
- Public education and outreach
- Construction site stormwater compliance
- Integrating Storm Management Practices (SMPs) into transportation project delivery
- Roadway maintenance, stormwater practices and NPDES compliance
- Total Maximum Daily Loads (TMDLs) and other special requirements
- Important stormwater management terms

Today’s Webinar

Moderated by:
Eric Strecker, P.E.
Geosyntec Consultants
Portland, Oregon

Seminar Development Support:
Marie Venner
Venner Consulting
Denver, Colorado
Efficient and Innovative Strategies for Achieving Better Environmental Performance

• DOTs are being challenged as never before – audits, consent decrees, budget shortfalls

We will explore:

• Ways DOTs are responding to new and old demands

• Different stormwater requirements around the country and innovative and efficient strategies for addressing those
Today’s Webinar: Key Themes

Efficient and Innovative Strategies for Achieving Better Environmental Performance

• New Challenges and Innovative Tools & Methods

• TMDLs and ESA - maturing and beginning to impact the transportation world in new and greater ways

• Transparency and Accountability – doing what we said we were going to do, more efficiently and effectively
RIK GAY, Colorado Department of Transportation, Deputy Water Quality Program Manager

Making it Easy, Eliminating the Hurdles to Compliance

WILLIAM FLETCHER, Oregon Department of Transportation, Water Resources Program Coordinator

Efficient & Innovative Permitting Approaches in Oregon

KARUNA PUJARA, Maryland State Highway Administration, Chief, Highway Hydraulics Division

Planning for Efficient Treatment of Runoff from Many Untreated Miles of Highways – Maryland’s Responses to TMDLs
• Each Speaker will have between 20 to 30 minutes for their presentations

• Followed by a question and answer period at the end
 • Questions can be submitted via the GoTo Webinar side bar (anytime during Webinar)
 • In addition, there will be polling questions for your response during the Webinar

• As of today, there are 161 sites registered for this Webinar
Making it Easy, Eliminating the Hurdles to Compliance

RIK GAY, Deputy Water Quality Program Manager,
Colorado Department of Transportation
CDOT MS4 Permit, Part I.B.1.a – Construction Sites Program

- **RECAT**: Site Inspection and Enforcement including Regional Erosion Control Assessment Teams. A minimum of **60 site inspections** will be performed per year, including follow-up inspections as necessary.

- **Reporting**: Semiannual summary of the RECAT site evaluations and outcomes as well as enforcement-related actions taken.

Construction Stormwater Discharge Permit (CSP), Part I.D.6 - Inspections

- **Minimum Inspection Schedule**: The permittee shall, at a minimum, make a thorough inspection, in accordance with the requirements in I.D.6.b (“Inspection Requirements”), at least once every 14 calendar days. Also, post-storm event inspections must be conducted within 24 hours after the end of any precipitation or snowmelt event that causes surface erosion.
Compliance Order on Consent

Division’s Findings of Fact and Determination of Violations

• Failure to conduct inspections of Stormwater Management Systems on seven out of eleven projects
• Failure to Implement and/or Maintain Best Management Practices to Protect Stormwater Runoff on all eleven projects
CDOT Compliance Order on Consent Item #36

- At least once per month, each CDOT Water Pollution Control Manager shall perform an audit/inspection at each project in his/her region.
- Monthly inspections and the average number of CDOT projects with active Construction Stormwater Discharge Permits at any given time result in more than 2,000 inspections per year statewide.

CDOT Compliance Order on Consent Item #38

- Submit a report on the findings of each monthly audit to the Director of Stormwater Compliance within 5 days of completing the inspection.
- The Director of Stormwater Compliance shall prepare a semiannual report summarizing the findings of the inspections as a whole.

CDOT Specification 208.09

- The Engineer will immediately notify the Contractor in writing of each incident of failure to perform erosion control in accordance with the CDPS-CSP.
How to manage a workload increase from 60 inspections per year to 2,000 AND meet the reporting requirements AND our notification requirements AND improve compliance?

Field Data Acquisition and Reporting Technology

The Challenges
• Support from Executive Management
• Acceptance from Field Staff
• Timeframe

The Benefits (sales pitch)
• Inspection efficiency
• Programmatic improvement through consistency
• $$$$ saved by eliminating contract Field Inspectors (big one)
The ESCAN Tool

• Significantly reduces the time and effort required to complete construction site inspection, paperwork, and recordkeeping
• Standardized the inspection process
• Creates a database to simplify required periodic reporting to regulatory agency
Key ESCAN Points

- Used existing inspection format for the development of a fillable form with multiple drop-down selections as well as “notes” sections that can be completed with handwriting recognition software by writing directly on the notebook screen.

- Once a non-compliant item is identified and corrective action specified, the program automatically associates that item to the regulation or specification with which it is in non-compliance when the report is generated.

- Has the capability to include location photos and plan drawings in the report automatically associating them with each non-compliant item in the report.

- The generated reports are printed at the project site at the completion of the inspection.
ESCAN - RECAT

Project name: ESCAN / CARL Demonstration Project
Location: at US 285 & C-470, Denver County, CO 80465, Latitude 39/38/30, Longitude...
Description: installing cable rail, Type 3 guardrail and 400 ft long paved median area...

Please choose a BMP category and a BMP from above to get started.
CDPHE Additional Information Request

- Regarding CDOT’s implementation of the Colorado Contractor Erosion Control Compliance Program and CDOT’s oversight of that escalated enforcement program
 - Requested documentation (including date) of each response to each finding for a six month period
 - Not including staff time, $12,000 in consultant hours were required to assemble and prepare a report

- Concluded that dates of findings reported compared with the resolution dates of the findings were **not in compliance** (48 hours) with CDOT Specification 208.09 and the Permit

- Additionally - Inadequate follow-up to findings and response tracking system.
CDOT Responded by Developing an Extension to ESCAN

Corrective Action Response Log (CARL)

• A web based interface which allows the Project Engineer to follow up on responses and report results immediately

• Tracks each finding to resolution and if findings remained unresolved, provides automated prompts at predetermined time intervals

• CARL also provides a legally defensible mechanism to escalate enforcement if required

• Supports the Chief Engineers performance objective of all findings will be resolved within 48 hours of inspection
Corrective Action List

A list of outstanding findings is show below. By default only those findings that require action by you are shown. To see findings that have already have approved actions submitted, select a different option below.

Enter your corrective action by clicking on the Action details icon in the first column.

To view the entire inspection report that includes a particular finding, click on the Report icon in the 6th column.

Corrective Action List

<table>
<thead>
<tr>
<th>Action details</th>
<th>Project name</th>
<th>District</th>
<th>Date of finding</th>
<th>Report</th>
<th>BMType</th>
<th>BMP Problem</th>
<th>BMP non-compliance</th>
<th>Location</th>
<th>Date action taken</th>
<th>Completed</th>
<th>By</th>
<th>Approval status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site #3 - CDOT Project FBR 09A-038 SH=96 (Ex Stk K23+8)</td>
<td>Region 2</td>
<td>2/11/2011</td>
<td></td>
<td></td>
<td>Stabilized Construction Entrance</td>
<td>BMP not implemented</td>
<td>Failure to utilize Stabilized Construction Entrance(s) per SWMP</td>
<td>Both sides SH 96</td>
<td>2/25/2011</td>
<td>Yes</td>
<td>Tom</td>
<td>Approved</td>
</tr>
<tr>
<td>University Concrete Pavement and Slab Repair</td>
<td>Region 6</td>
<td>2/14/2011</td>
<td></td>
<td></td>
<td>Stabilized Construction Entrance</td>
<td>Failure to maintain BMP per specification</td>
<td>Stabilized Construction Entrance(s) require maintenance</td>
<td>Eastbound C-470 on ramp</td>
<td>2/16/2011</td>
<td>Yes</td>
<td>George</td>
<td>Approved</td>
</tr>
<tr>
<td>University Concrete Pavement and Slab Repair</td>
<td>Region 6</td>
<td>2/14/2011</td>
<td></td>
<td></td>
<td>Roadway Cleaning</td>
<td>BMP not implemented</td>
<td>Failure to utilize Roadway Cleaning as a BMP per SWMP</td>
<td>Project Wide</td>
<td>2/16/2011</td>
<td>Yes</td>
<td>George</td>
<td>Approved</td>
</tr>
<tr>
<td>University Concrete Pavement and Slab Repair</td>
<td>Region 6</td>
<td>2/14/2011</td>
<td></td>
<td></td>
<td>Perimeter Control</td>
<td>BMP not implemented</td>
<td>BMP missing</td>
<td>Median (2 locations where slab replacement is occurring)</td>
<td>2/16/2011</td>
<td>Yes</td>
<td>George</td>
<td>Approved</td>
</tr>
<tr>
<td>University Concrete Pavement and Slab Repair</td>
<td>Region 6</td>
<td>2/14/2011</td>
<td></td>
<td></td>
<td>Inlet Protection</td>
<td>BMP not installed per specification</td>
<td>Installation of Inlet Protection not per specification</td>
<td>University touch of County Line Road, 2 locations on west and east of road</td>
<td>2/16/2011</td>
<td>Yes</td>
<td>George</td>
<td>Approved</td>
</tr>
</tbody>
</table>
Benefits

Not only has the original objective of managing the workload been met, but a number of unintended benefits have been realized.

Improved Compliance
- Reduced average number of findings per project
Not only has the original objective of managing the workload been met, but a number of unintended benefits have been realized.

Improved Compliance
- Reduced average time required to respond to findings

6B Annual Area of Emphasis
Water Quality
2011 Chief Engineer Objective:

100% of RECAT findings will be resolved or addressed within 48 hours of the inspection.
Benefits

Not only has the original objective of managing the workload been met, but a number of unintended benefits have been realized.

Improved Compliance

- Improved consistency
- Less subjective

<table>
<thead>
<tr>
<th>Yr</th>
<th>RECAT</th>
<th>MAR</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>11.67</td>
<td>3.92</td>
<td>7.75</td>
</tr>
<tr>
<td>2010</td>
<td>10.46</td>
<td>4.96</td>
<td>5.50</td>
</tr>
<tr>
<td>2011</td>
<td>8.91</td>
<td>3.78</td>
<td>5.13</td>
</tr>
</tbody>
</table>
Benefits

Not only has the original objective of managing the workload been met, but a number of unintended benefits have been realized.

Improved Compliance

• No further compliance advisories...knock on wood
Not only has the original objective of managing the workload been met, but a number of unintended benefits have been realized.

Data Management Utility
- Database used by Design Engineers to evaluate BMP effectiveness
- Regulatory reporting much less burdensome

Not to Mention
- Minimum of $187,000 per year savings just in personal services alone!!!
Conclusion

Timing (and Circumstances) was Everything!

A decade-old idea and then a “perfect storm”

• In-situ field data acquisition with automated reporting capability
• Imposition of a significant regulatory action
• Substantial reductions in budget

= Accelerated Research, Development, Funding, & Implementation

Your Challenge? Don’t wait until you are already on fire before you try to put it out!!!

• More info: Rik.Gay@dot.state.co.us
Multi-Agency Collaboration in Addressing Stormwater ESA and 401 Requirements

Process, Results and Consequences

William Fletcher
Water Resources Program Coordinator
Geo/Environmental Section
Oregon Department of Transportation
Incentives for Collaboration

• ODOT dissatisfaction with and confusion about the stormwater regulatory environment: ESA, CWA, NMFS, DEQ, all at once...

• Regulatory Agency dissatisfaction with ODOT’s stormwater management process and products

• Fear that without improvement, regulatory gridlock was imminent
• ODOT initiated a collaborative working group with the stormwater stakeholders:
 – NMFS
 – Oregon DEQ
 – USFWS
 – FHWA
 – EPA
 – ODFW
Challenges to effective collaboration

• Lack of trust
• Lack of a common language
• Difficulty in translating laws into implementation leads to unclear goals
• Fear of lawsuits inhibiting regulatory agencies from making definitive agreements
Twin tracks:

• **Technical**: Develop the process and tools for effective stormwater management

• **Regulatory**: Streamline the ESA and 401 processes
Strategy

• Define the problems
• Define each agency’s goals
• Break down the task into constituent parts
• Agree on a course of action: what to tackle when
Regulatory Agency Goals

Protection and recovery of Oregon’s waters and aquatic species

Bottom Line:
Maintaining the Status Quo is not Sufficient!
Certainty in scope, schedule and budget, while meeting environmental requirements - permissable, constructable and maintainable

- ODOT is responsible for its own stormwater, not everyone else’s
The Big Goal

Clear, Consistent, and Mutually Agreed on Stormwater Management Criteria
Competing Approaches

Numeric Standards
- Difficult to verify
- Require ongoing monitoring
- Different goals lead to different numbers for various pollutants
- Environmental outcome determinable (in theory)

Management Criteria
- Verification at design
- Easy confirmation of implementation
- Clear, but flexible
- Environmental outcome somewhat fuzzy
Stormwater Management Criteria

- Treat all of the runoff generated by the water quality design storm from the contributing impervious area using preferred BMPs

- Maintain pre-project hydrology to protect channel form and processes
Technical Issues

• What are the preferred treatment techniques?
• What is the water quality design storm?
• What stormwater is ODOT responsible for?
• What is the range of storms for flow control?
BMPs

- Ranked qualitatively, based on the results of a literature review of effectiveness and unit processes
- “Preferred BMPs” address a wide range of pollutants, including dissolved metals
The design storm was selected based on climate data analysis to determine the point where increasing storm size produced relatively little benefit.
ODOT is responsible for treating all of its runoff that is managed by the project, even if it comes from outside the project area, but not runoff from land owned by others.
Flow Control Design Storms

- Selection of the design storm range based upon fluvial geomorphologic considerations
- Manage the change from pre-project conditions
• Stop obsessing on the Effect Determination: NMFS incorporated the SW management criteria into SLOPES IV, a programmatic BO for projects with 404 permits

• Tacit agreement from DEQ that the SW management criteria meet 401 requirements
Implementation

- Joint ODOT and DEQ training on stormwater management plans for 401 certs
- Incorporation into ODOT’s Water Resources Specialist Manual
- Incorporation into ODOT’s SLOPES IV Handbook
- BMP selection guidance in ODOT’s Hydraulic Manual
Outcomes

Well defined criteria can provide a good basis for flexibility project by project, or it can lead to rigidity.

or

It can lead to rigidity.
Stormwater management criteria formed the basis of a major change in water quality permitting of ODOT projects:

- ODOT assumed the right to self-evaluate 401 SWMPs for Nationwide 404 Permits
- DEQ/ODOT Liaison responsibility shifting from project evaluation to program level permitting
Ongoing Efforts

• Using the SW Management Criteria as the basis for ODOT’s Environmental Performance Standards
• Developing clarification and interpretation guidance
• Working with NMFS and FHWA on a broader programmatic BO
Contact:
William Fletcher
Oregon Dept. of Transportation
Email: William.B.FLETCHER@ODOT.state.or.us

More and Detailed Information:

http://www.oregon.gov/ODOT/HWY/GEOENVIRONMENTAL/storm_management_program.shtml
Planning for Efficient Treatment of Runoff from Many Untreated Miles of Highways – Responses to TMDLs

KARUNA PUJARA, Chief, Highway Hydraulics, Maryland State Highway Administration
Past Efforts To Do The Right Thing

- Maintain Existing Stormwater Infrastructure - An Asset Management Program
Past Efforts To Do The Right Thing - Upgrade Existing Infrastructure To Perform at a Higher Standard

upgrade from ½ inch to 1 inch of runoff, provide volume control for channel protection
TMDL (WLA) to address Local Stream/watershed impairment

Baseline Load (Current Condition)

Reduction Load

The Fundamental Need – TMDL

Impervious Surface has been specified as a surrogate for TMDL compliance
New Focus

Focus on meeting **numerical limits** and compliance with NPDES MS4 Permit and State regulatory requirements

Previous:

- Water Quality Volume
- Recharge Volume
- Channel Protection Volume
- Flood flow Peak Discharge
A Quick Glance of Achievement

- Practicing SWM Since 1985 – 25 Years Under State Regulations
- Latest Count of Pavement Managed by Stormwater Control – 9.9% of Pavement Owned

- New NPDES TMDL Goal for Additional Management of 30% by 2017 – Next 6 years
A Quick Glance at Achievement and Target

- % Pavement Managed by Stormwater Treatment
- % Pavement Retrofit for Nutrients and Sediment
Sub-Allocations

53 Maryland Bay Water Quality Limited Segments

24 Jurisdictions

Source Sectors

- Point Sources - WWTPs
- Agriculture
- Stormwater (Urban)
- Septic Systems

TMDL Segment Sheds

MDE

Chesapeake Bay
MD TMDL Segment-Sheds

Maryland

Martin O'Malley, Governor
Anthony G. Brown, Lt. Governor
Shari Wilson, Secretary
Robert Summers, Deputy Secretary

Data Sources:
TMDL Segment Sheds - MDE/CFP
Chesapeake Bay - CFP
Imagery - ESRI
Map Production Date: 11/17/10
Approx 150 to 200 K/acres of pavement managed through traditional stormwater control (cost of LID higher) for construction.

2017 Goal – 6690 acres

Next 5 Year budget need > $1 B

Negotiations for allowable alternative strategies for pollution control (focus on nitrogen, phosphorous, sediment)
MSHA Approach to TMDL Implementation

- Broader set of pollution control strategies to be deployed
 - Identification of Existing Non-Structural Water Quality Features, Retrofit and Accounting
 - Upgrade Existing Structural Stormwater Facilities
 - Stabilize Eroding Outfalls and Channels
 - Reforestation and Tree Planting
 - Stream Buffer Planting
 - Stream Restoration/Stabilization
 - Wetland Creation
 - Street Sweeping/Inlet Cleaning
 - Pavement Removal
 - Shoreline Stabilization
 - Other
MSHA’s Approach to TMDL Implementation

• Broader set of pollution control strategies to be deployed beyond stormwater controls
• Cost and pollutant removal efficiencies - main factors in selection of strategy
• Commitment of some level of pollution reduction with stormwater controls based on current capacity of $ and resources
• Address infrastructure needs while achieving pollution reduction
• Demonstrate good faith effort as a State agency
<table>
<thead>
<tr>
<th>Treatment/Source Control Strategy</th>
<th>Units</th>
<th>Total 10 yr Cost (Millions) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural BMP & ESD Facilities</td>
<td>1,115 Acres</td>
<td>161.6</td>
</tr>
<tr>
<td>Stream Restoration</td>
<td>16,063 LF</td>
<td>15.1</td>
</tr>
<tr>
<td>Tree Plantings</td>
<td>22,210 Acres</td>
<td>255.4</td>
</tr>
<tr>
<td>Wetland Restoration</td>
<td>335 Acres</td>
<td>70.4</td>
</tr>
<tr>
<td>Pavement Removal</td>
<td>216 Acres</td>
<td>64.8</td>
</tr>
<tr>
<td>Inlet Cleaning</td>
<td>40,000 Each</td>
<td>35.0</td>
</tr>
<tr>
<td>Street Sweeping</td>
<td>1,417 Miles</td>
<td>20.1</td>
</tr>
</tbody>
</table>

*Not including ROW costs
Current Methodology

• MSHA has inventory of
 – the impervious surface MSHA owns in permitted areas,
 – inventory of all stormwater facilities owned and the drainage areas serving that facility, and
 – developing ROW GIS layers

• Obtain federal buy-in/clarification on federal aid support

• Utilize existing infrastructure and examine least cost opportunities for expansion of management controls within available r/w
Current Methodology

• Identifying areas that do not have already planted trees or wildflowers
 – mass afforestation to reduce runoff (stand alone efforts and partnership efforts e.g., DOT provides funding to buy the trees, DNR provides the land, Corrections provided the labor)

• Working with Agriculture Department to provide buffer planting where that hasn’t been possible to date

• Address needs/opportunities where MSHA could get credit but locals aren’t able to address
ROUTES TO STORMWATER MANAGEMENT FOR BAY TMDL – MSHA INFRASTRUCTURE IN WATERSHED CONTEXT

- Rights of Way Accounting
- Impervious Area Accounting
- IDDE
- Stormwater Management Facilities Program

- Own and Maintain more than 2000 Facilities Statewide
- An asset management program
- A system of Inspection and Rating
- Response based on Functional and Structural Rating (Routine maintenance to Retrofits)
MSHA’s Approach to Stormwater for paved surfaces built prior to 1985
MSHA’s Approach to Stormwater – A watershed approach - for paved surfaces built prior to 1985

Removal of Concrete Channel at I 68
Partnership project with Watershed Group
Planting by others
USE III Stream
MSHA’s Approach to Stormwater – A watershed approach - for paved surfaces built prior to 1985

Built on Fill with step/pool

MPHI (Pre restoration) = 6.6
MPHI (2005) = 56.5
Avg. MBSS 1st Order Stream MPHI (2005) = 35.8

Trout found in 2005 in Restored reach
TMDL Projects – Maximizing Mobilization

- Tree planting, Afforestation
- Stream channel restoration
- Upland SWM Facilities
- Outfall Stabilization
- Outfall Channel Stabilization
Tree Plantings

• Compile tree plantings sites that have occurred since 2006
 – 1 Million Tree Initiative
 – ARRA Projects
 – Partnership Plantings

• Next Steps:
 – Identify addition ROW Opportunities
 – Consider other public or private property if necessary

Tree planting site identified within MSHA ROW at I-695 and US 40, Baltimore County
Currently compiling all MSHA wetland creation sites that have occurred since 2006:
- Transportation Enhancement Program Projects
- Stewardship Projects

Next Steps
- Utilize the Watershed Resource Registry (WRR) data to identify potential wetland creation sites and potential ranks

Preliminary results of WRR data identifying potential wetland creation sites.
• Formed a TMDL steering committee (includes administrator and directors from various offices)

• Formed multi-office, multi-disciplinary subject area expertise teams such as
 • Watershed Coordination Team
 • Planning Team
 • Research Team
 • Implementation Team

• Work area focus and lead with hydraulics and water quality expertise

• Established TMDL fund similar to drainage and bridge funds
Implementation Comparison

ICC - Inter County Connector

• Planning to Construction Time Line
 2003 to 2010
• Annual Spending $300M to $565M including Highways and Bridges
• Average review time 550 hours per month

TMDL

• Time line
 2010-2020
• Projected Annual Spending $50 to $350M only in water quality improvement projects and activities
• Working towards developing MOUs with regulatory agencies
Lessons Learned

- Federal aid support
- Attention to local TMDL as well as bay TMDL (watershed scale) – maximize output for multiple needs
- Attention to anti-degradation policies
- Attention to TMDL documents
- Efficiencies
- Partnerships with regulators, local governments, and watershed groups
- Regulatory flexibility and cohesion
- Management of excess land
- Future maintenance
- Understanding of drainage assets that need improvement
- Right of way and utilities
- Understanding of organizational capacity
- Knowledge of existing stormwater controls, its functional condition, drainage areas and impervious surfaces

— All important in building a good plan of action
Chesapeake Bay TMDL
http://www.epa.gov/chesapeakebaytmdl/

Bay TMDL Watershed Implementation Plans - Ensuring Results
http://www.epa.gov/reg3wapd/tmdl/ChesapeakeBay/EnsuringResults.html?tab2=1

Maryland's Watershed Improvement Plan for the Bay and other TMDL information
http://www.mde.state.md.us/programs/Water/TMDL/ChesapeakeBayTMDL/Pages/programs/waterprograms/tmdl/cb_tmdl/index.aspx
Questions and Answers

• Please submit questions via the GoTo Webinar Bar
Concluding Remarks

• Please fill in and submit the simple on-line questionnaire (e-mail will provide directions)

• The webinar will be available for on-demand viewing and pdf of the presentation for download at the Center website:

 – http://environment.transportation.org/

• Thank you for your attention and participation