This page is intentionally left blank.
Foreword

Every Day Counts is the Federal Highway Administration’s initiative to advance a culture of innovation in the highway community in partnership with States*. Through this collaborative, State-based effort, FHWA coordinates rapid deployment of proven, market-ready strategies and technologies to shorten the project delivery process, enhance roadway safety, and improve environmental sustainability.

The maps on the following pages depict the State established implementation goals to be accomplished by December 2014. This report highlights progress during the year of 2013 of the second round of EDC. Note that some of the progress highlights are from States that do not have a goal of being at the Demonstration or Post-Demonstration stage by December 2014 but are actively exploring the innovation.

Definition of the Innovation Deployment Stages

Demonstration: Testing/piloting the innovation.

Post-Demonstration: Making adjustments to prepare for full deployment, adopting the innovation as a tool in the toolbox, process in place to include innovation as standard practice.

*State is defined as a general term to be all-inclusive (i.e. State Transportation Agency, local municipalities, contractors, consultants, etc.)
Contents

3D Engineered Models for Construction .. 1

Accelerated Bridge Construction .. 3
- Geosynthetic Reinforced Soil – Integrated Bridge System
- Slide-in Bridge Construction
- Prefabricated Bridge Elements and Systems

Alternative Technical Concepts ... 7

Construction Manager/General Contractor 9

Design-Build .. 10

Geospatial Data Collaboration ... 11

High Friction Surface Treatments .. 14

Implementing Quality Environmental Documentation 15

Intelligent Compaction .. 16

Intersection and Interchange Geometrics 17

Locally Administered Federal-Aid Projects 18

Programmatic Agreements .. 21

SHRP2 Traffic Incident Management Responder Training 23
3D Engineered Models for Construction

The objective of the 3D Engineered Models for Construction initiative is to promote technology transfer and project implementation of the 3D model for benefit to users such as more accurate quantity computations, clash detection, string-less paving and milling, and earthwork operations.

National Implementation Goals for 3D Engineered Models for Construction

Progress Highlights

In **California**, all 12 Districts have projects that are now utilizing Civil 3D. Most projects are providing electronic files to contractors during bid phase. Approximately 2,000 surveyors and engineers have been trained in Civil 3D.

Florida is refining procedures of design and deliverables including update to the CADD Production Criteria Handbook (CPCH). New sections include information on Automated Machine Guidance.

Iowa DOT and Iowa State University are champions for the 3D Technical Working Group (TWG). Iowa is developing training materials and working on the enhancement of FHWA’s construction website to provide additional information on 3D modeling technology.

Maine DOT utilizes a special provision that allows contractors to use Automated Machine Guidance technologies and systems. During 2013, MaineDOT utilized 3D modeling for construction of the I-95 Exit 113 project in Augusta. Construction accuracy, efficiency and productivity realized from utilizing 3D modeling was presented as part of a panel discussion at Maine’s Transportation Conference in December 2013.
Maryland SHA along with multiple representatives from the contracting community drafted an electronic grade control specification that will be sent to specification committee for implementation by January 1, 2014.

Michigan completed and opened to traffic the I-96 Latson Road Interchange. MDOT staff has been trained on the 3D Engineering Models technology.

New Hampshire Division, in conjunction with ACEC and AGC, held on December 10, 2013 a 3D Modeling Workshop that attracted over 85 attendees from NHDOT and industry. Industry experts shared their experiences and NHDOT express their interest in pursuing the technology and working with its partners to develop standards for implementation.

New York in cooperation with FHWA and industry is developing a web-based training module and supporting technical briefs for construction of steel bridges. An Expert Technical Group (ETG) is guiding the effort.

North Dakota DOT completed two projects to test the technology on earthwork only.

Pennsylvania developed a special provision for PS&E packages, provided training on OpenRoads software and let a pilot project (July 2013). Also, PA issued standards on pre-bid design files for contractors.

Rhode Island selected and internally approved pilot project for 3D/4D/5D modeling and design visualization. Division approved pilot project and its associated implementation plan, and is providing support. Project includes infrastructure (road, bridges, roundabouts) and land redevelopment. RIDOT, RITBA, City, and MPO are partnering together.

South Carolina developed specifications and criteria. The technology is being used in a pilot project that was let for construction in November 2013.

South Dakota draft specifications have been reviewed to allow contractor machine control grading for the subgrade. All projects let starting in January 2014 will be using the new specifications.

Federal Lands Highway design manual has been delivered – “Corridor Modeling and Roadway Designer”. Videos of working examples are in final draft.
Accelerated Bridge Construction

The objective of Accelerated Bridge Construction is to advance the rapid implementation of three technologies: Slide-in Bridge Construction, Geosynthetic Reinforced Soil Integrated Bridge System and Prefabricated Bridge Elements and Systems; by providing owners, contractors, consultants, and industry the knowledge and skills to decrease construction time, minimize mobility impacts, reduce cost, increase safety for workers and the traveling public, improve constructability, quality and durability, and reduce environmental impacts.

National Implementation Goals for GRS-IBS

Progress Highlights

Colorado is currently using GRS-IBS on the I-70 and Smith Road Project.

Federal Lands Highway developed GRS-IBS standard drawings and specifications.

Florida DOT is getting ready to construct their first GRS State owned bridge in early 2014 (Orange Ave. in Tallahassee).

Georgia is re-designing bear crossings on a project using GRS-IBS. MSE walls are used for all projects that require walls.

Iowa constructed three additional GRS-IBS bridges on the county roadways (two bridges in Scott County and one bridge in Buchanan County) during the summer of 2013.

Maine completed the design and construction of two bridges using GRS-IBS.
Missouri DOT received $200K in SHRP2 funds to construct a project that incorporates GRS-IBS and prefabricated superstructure and deck elements.

Montana held a showcase for the Dupuyer project in Central Montana in September 18, 2013.

Nevada DOT is currently designing two bridges off the National Highway System using GRS-IBS. NDOT held a GRS Workshop on July 31, 2013. Local government agencies were invited and encouraged to use GRS for off system bridges.

New York Division hosted a workshop on the Geosynthetic Reinforced Soil Integrated Bridge System initiative in June 18, 2013. The workshop was in Potsdam, New York, and jointly sponsored by the FHWA, the New York State DOT, and Cornell Local Roads Program. Participants from the surrounding area were invited, including four of the Tribal Nations in New York State.

North Carolina has formed a GRS Task Force with representatives from various units within NCDOT. Task force is co-chaired by FHWA NC Division Bridge Engineer. The selection and evaluation criteria have been drafted.

Pennsylvania, through T2 funds, produced a video to promote GRS. Also, PA has a transportable model for use at conferences and classroom sessions. PA has supported live demo days at 2 locations in the 2013 construction season and has focused on GRS at several conferences including the Maintenance Engineers Project Development Technology Day.

Wisconsin has incorporated GRS-IBS into the State Bridge Manual.

National Implementation Goals for SIBC

Progress Highlights
Connecticut will be using slide-in bridge construction on at least two projects which are currently in the design phase.

Iowa DOT built their first SIBC Bridge during the summer of 2013.

Maine completed the construction of a Highways for LIFE SIBC project, Littlefields Bridge in Auburn, in August 2013.

Michigan sponsored a 1-day Accelerated Bridge Construction/Structural Slide and Move Workshop on December 9, 2013 in Lansing, MI, for contractors, fabricators and consultants.

New York replaced two bridges, I-84 over Dingle Ridge road in Region 8 using SIBC in September and October 2013.

Progress Highlights

Arkansas is starting to develop an ABC Decision-Making Process and Policy. The FHWA Division Office and the State DOT are working with University of Arkansas’ Center for Training Transportation Professionals to develop ABC awareness training for local bridge owners.

Federal Lands Highway have developed standard drawings, flowchart and a decision matrix for PBES.

Illinois routinely constructs approximately 100 pre-cast/pre-stressed adjacent box beam structures per year primarily on the local system. Illinois DOT is actively pursuing suitable candidate structures for precast full depth deck panels. In September 2013, Illinois Division and IDOT staff completed a scanning tour in Iowa on full depth deck panels.

Iowa DOT is implementing a decision making process that considers ABC early in the project development process for state-owned bridges. The Iowa Highway Research Board is developing standards for ABC designs for Iowa’s local system bridges.

Missouri DOT is also partnering with the Missouri University of Science & Technology on the design of a full-depth FRP bridge deck panel that is stronger and more economical than those currently being manufactured. MoDOT submitted a National STIC Incentive application for FY 2014 to partially fund the next phase of the research.

North Carolina has developed standard details for precast substructure units.

Rhode Island established a state policy on ABC and direction for design consultants.

In Tennessee, a PBES project in Cocke Co. at SR9/French Broad River is under construction. A FAST 14 method (PBES) and full depth concrete panels for deck replacement on 4 structures in I-40 in Davidson County is in design and is also under consideration for CMGC method of project delivery.

Wisconsin successfully constructed in 2013 the Rawson Avenue over IH-94 project incorporating pre-cast pier elements in addition to the SMPT technology. A documentary video has been produced. WisDOT received a $300,000 grant through the FHWA SHRP2 (R04) Implementation Assistance Program assistance for the development and deployment of Precast Pier Columns and Pier Caps on multiple bridges along the IH-39 corridor project.
Alternative Technical Concepts
To increase the rapid deployment of Alternative Contracting Methods (ACMs) and harness innovation through early contractor involvement, while providing Public Owners and Industry with the knowledge, tools, and skills to successfully implement Alternative Technical Concepts (ATCs) as a contracting method.

Alternative Technical Concepts – Design-Bid-Build (ATC D-B-B)
National Implementation Goals for ATC D-B-B

Alternative Technical Concepts – Design Build or Construction Manager/General Contractor (ATC D-B or CM/GC)
National Implementation Goals for ATC D-B, CM/GC
Progress Highlights

District of Columbia will be using ATCs for the South Capitol Street Bridge project (DDOT only uses ATCs for D-B projects).

Georgia DOT awarded the Northwest Corridor Project on November 14, 2013. The contract included 13 ATCs from the best value developer.

- GDOT valued in about $60M the ATCs included on the project, which correlate to 10% of the awarded amount.
- Several ATCs from the other proposals were negotiated and included into the contract for an additional savings of $1.2M.
- GDOT also negotiated the inclusion of 2 life cycle ATCs that enhanced the project value and still kept the contract below the cost of the initial best value proposal.
- The use of ATCs for the NWCP was a significant factor in competition, resulting in a proposal that was $150M less than the project cost estimate.

Illinois DOT has established a new Office of Innovative Project Delivery under the Secretary.

Michigan’s first ATC on D-B-B was let to contract in May 2013. ATC was used for staging plans and maintenance of traffic. During the advertisement period, 5 teams submitted ATC with 4 contractors actually submitting bids – all bidders used their ATC. The project originally scheduled the roadwork completion for November 2014, the winning contractor’s ATC allowed completion of the roadwork in November 2013. Minor bridge work and miscellaneous items remain for 2014 completion.

New York utilized an ATC process on the Kosciuzsko Bridge Replacement procurement process this year.

Maryland utilized ATCs on ICC D-B low bid Contract D/E. ATC will also be used on MD 355 Crossing LPA D-B contract which is currently under procurement. The DelMar Division has worked with HQs to receive programmatic approval to utilize ATC under SEP-14. ATC is routinely implemented on D-B projects in MD, part of regular D-B projects toolbox.

Massachusetts utilized ATCs on the Longfellow Bridge and Burns Bridge D-B projects.

South Carolina continues to refine criteria for ATC utilization, developing a Best Practices Manual, and developing a system to efficiently archive approved ATCs.

Vermont uses ATC on all D-B Projects. This is a standard procedure that has been built into the Vermont D-B Process. Projects include: Ryegate, Milton, and Brattleboro. Currently, VTrans does not have any plan to use ATC on their CM/GC projects. VTrans has been using ATC on D-B projects prior to EDC2.
Construction Manager/General Contractor (CM/GC)

To increase the rapid deployment of Alternative Contracting Methods (ACMs) and harness innovation through early contractor involvement, while providing Public Owners and Industry with the knowledge, tools, and skills to successfully implement Construction Manager/General Contractor (CM/GC) as a contracting method.

National Implementation Goals for CM/GC

Progress Highlights

District of Columbia completed a draft specification in September 2013.

Federal Lands Highway is currently delivering the Fond Du Lac Reservation Road project on the Fond Du Lac Reservation in Carlton Co, MN and the South Fork Smith River project in Del Norte County, CA using CM/GC.

Louisiana hosted an “Early Contractor Involvement (ECI)” (LA’s name for CM/GC) in October 30, 2013. LADOTD has decided to move forward with proposing ECI legislation (with the support of AGC & Consultants (ACECL).

Maryland has identified a test pilot project, MD 24. NTP was issued in December 2013.

Minnesota is currently reviewing proposals for a CM/GC firm for the Winona Bridge Replacement project ($140 Million).

New Hampshire and Maine are jointly delivering the Sarah Mildred Long Bridge Project using CM/GC. Maine is the lead State. NH is participating to gain knowledge on the delivery method before they pursue legislation.

Vermont has selected a contractor for their first two CM/GC projects (Middlebury & Hartford) and is working on a CM/GC manual.
Design-Build (D-B)

To increase the rapid deployment of Alternative Contracting Methods (ACMs) and harness innovation through early contractor involvement, while providing Public Owners and Industry with the knowledge, tools, and skills to successfully implement Design-Build (D-B) as a contracting method.

National Implementation Goals for D-B

Progress Highlights

California legislation this year passed an additional bill (AB 401) allowing Caltrans to use D-B on an additional 10 projects and allows local agencies unlimited use of D-B.

New York DOT is assessing their experiences with D-B to optimize their chances of receiving full legislative authority after the three year pilot period expires at the end of 2014.

South Carolina has made some progress in development of D-B Policy Manual and evaluating the need/benefit of establishing a stand-alone D-B unit at SCDOT.

Vermont is currently seeking to establish an Innovative Contracting Team.
Geospatial Data Collaboration (GDC)

To expand the use of collaboration technologies in the environmental process for the purposes of: reducing the time needed to assemble data and perform routine tasks; improving the repeatability of analyses; improving the transparency and relevance of decision information to process partners and stakeholders; and providing insight into how partners and stakeholders are engaging in the process.

Incorporating Collaborative Tools into the Environmental Process through Operating Agreements

National Implementation Goals for GDC Incorporating Collaborative Tools into the Environmental Process through Operating Agreements
Implementing Collaborative Data Libraries

National Implementation Goals for GDC Implementing Collaborative Data Libraries

Implementing Collaborative GIS Screening Tools

National Implementation Goals for Implementing Collaborative GIS Screening Tools
Progress Highlights

Idaho IPlan data/map development Phase I was completed in November 2013. IPlan is now public to limited agency partners.

Louisiana is in the process of collecting local road data geometrics to be included in its Road & Highway GIS Management System and developing an internal data library.

The **Missouri** DOT and the Missouri Department of Conservation were recently awarded SHRP2 funding to begin planning a Geospatial Data Collection website between the two agencies.

Nevada is developing a new computer system, Planning and Needs System (PLANS), which is in the elementary stages of development. The new system will include a GIS framework.

New York is developing Geospatial information for other transportation applications such as the Geospatial Network for All Public Roads for use for Highway Performance Monitoring System (HPMS) and linear referencing.

Ohio has already implemented a limited collaborative data library and is currently determining the logical expansion of the data-sets to be incorporated. This data library is accessible to the public at ODOT’s home page on the internet.

In **Pennsylvania**, a collaborative data library is already in practice. Pennsylvania is a pilot state for the AASHTO UPlan project and participates on the Technical Information Group (TIG). The UPlan project incorporates the 3 aspects of this initiative. Besides the participation, PennDOT is actively using data collaboration and decision making as part of its Linking Planning and NEPA process.

Washington State GIS Branch has sponsored a “cloud”-based GIS mapping environment designed specifically for sharing spatial data and services (ArcGIS Online).
High Friction Surface Treatments

To advance the rapid deployment of High Friction Surface Treatments (HFST) by working with agencies, contractors, consultants, and industry to increase the knowledge and skills to apply this recommended countermeasure on horizontal curves, intersection approaches, and high-priority locations as identified, in order to decrease crashes, injuries and deaths.

National Implementation Goals for High Friction Surface Treatments (HFST)

Progress Highlights

California has completed 20 projects to date.

Delaware developed a HFST special provision which was approved by FHWA.

Hawaii DOT has developed a specification for this treatment.

Missouri completed one of the four HFST projects to be done with the Highways for LIFE grant on US 54 in Jefferson City in October 2013.

Oklahoma formed a working group comprised of stakeholders to study different options of HFST and develop guidelines for the technology.

Puerto Rico developed a Specification based on AASHTO Specs.

Rhode Island has completed a process to identify potential locations.

South Carolina completed 20 projects with many additional sites planned through the Roadway Departure Plan.

West Virginia has completed 26 sites. HFST criteria was evaluated and it was determined that the WV specifications will include Polyester Polymer.
Implementing Quality Environmental Documentation

The goal of the initiative is to improve and expedite transportation project delivery through focused improvement in NEPA documentation, especially the presentation of project purpose and need and alternatives analysis prepared for decision-makers, resource agencies, and the public.

National Implementation Goals for IQED

Progress Highlights

Georgia DOT applied the IQED core principles to the draft Environmental Assessment for the SR 144 widening project in Bryan County.

Mississippi DOT and FHWA are working to develop an Environmental Process Manual that is expected to incorporate IQED core principles.

Montana is utilizing the IQED core principles in the development of the Executive Summary for the Billings By-Pass Final EIS.

North Carolina selected 6 projects to pilot the IQED core principles.

Texas is developing a process to include IQED principles as standard operating procedures for all projects under MAP-21 NEPA Assignment.

Virginia’s I-64 Peninsula study EIS used IQED principles, including a reader-friendly 11 x 17 document with high quality graphics, combining the “Affected Environment” and “Environmental Consequences” chapters to aid readability, and incorporating technical material by reference. The Hampton Roads Bridge-Tunnel EIS also uses high quality graphics and incorporates technical materials by reference.
Intelligent Compaction

The objective is to deploy Intelligent Compaction (IC) as a tool to enhance the quality control of highway projects by increasing uniformity and accelerating construction. IC technology will provide real-time compaction information feedback to roller operators and facility owners.

National Implementation Goals for Intelligent Compaction (IC)

Progress Highlights

Alabama DOT was awarded a SHRP2 Implementation Assistance Award for lead adopter performance specification development.

California completed one project and draft specifications are 97% complete.

District of Columbia developed an IC specification.

New Hampshire developed and piloted one project and specification using IC.

Pennsylvania’s Standard Special Specification is complete. PennDOT continues to contribute via the Pooled Fund Study.

Rhode Island awarded the Paver Placed Elastomeric Surface Treatment (statewide) project in Oct 2013. Construction will be in the Spring and Summer of 2014.

In Tennessee, a Highways for LIFE showcase on intelligent compaction was held in Brentwood, TN on October 23, 2013. TN has completed four projects to date.

Texas has completed four projects and developed an IC specification.

Utah special provisions have been completed and approved for use by FHWA/UDOT.
Intersection and Interchange Geometrics

The goal of the Intersection and Interchange Geometric (IIG) initiative is to include the intersection control/design evaluation policies or processes of transportation agencies that ensures they are routinely considered and evaluated alongside other alternatives, and implemented when appropriate.

National Implementation Goals for IIG

Progress Highlights

Alabama has a Roundabout Guide Book under development by a consultant.

In Indiana, the development of the essential Intersection Decision Guide (a systematic, coherent decision-making model for the purpose of identifying appropriate intersection treatments) has been completed, and last phase of user training was conducted on December 12, 2013.

Alaska issued Roundabouts First guidance in our Alaska Highway Preconstruction Manual in November 2013. The Roundabouts First guidance requires project managers to, first, consider a roundabout in any location where capacity or crash history warrants upgrading a currently un-signalized intersection to a roundabout or signalized intersection. If a roundabout is not advanced, the design report must provide justification why the roundabout was not the selected alternative.

In Vermont it is VTrans policy for every intersection design project to evaluate a roundabout option.

Wyoming completed construction of a DDI at the I-25/College Drive Interchange in November 2013.
Locally Administered Federal-Aid Projects

The purpose of this EDC-2 initiative is to expand the routine use of programmatic practices that accelerate the development and delivery of locally administered projects by: encouraging program innovations that reduce oversight resource needs, delegate program accountability risk to LPAs with demonstrated qualifications and experience, and increasing local ownership and participation through enhanced partnerships. These objectives will be achieved by implementing innovation in the areas of LPA Certification, Consultant Services Flexibilities and Stakeholder Partnering.

National Implementation Goals for LPA Certification Program

Progress Highlights

Maryland developed tailored training and brochures to assist LPA’s and their consultants in the Environmental Compliance Process for Federally Funded LPA projects.

In Mississippi the Division worked with MDOT to incorporate a certification process within the MDOT Project Development Manual for LPAs. The Division approved this manual.

Montana updated their LPA certification manual in 2013. One LPA requested certification for the preconstruction phase on a project. MDT is in the process of certification by phase on that project.

New Hampshire has trained over 400 individuals as part of their Certification Program. All sub-recipients are required to have a certified person in responsible charge prior to receiving funds for a Federal-Aid project.

Wisconsin formed an LPA Certification Workgroup and developed a Draft charter statement.
National Implementation Goals for LPA Consultant Flexibilities

Progress Highlights

Louisiana has several consultant retainer contracts for Safe Routes to School and the Local Roads Safety program.

Missouri advertised the statewide on-call consultant contract in October and November.

Pennsylvania did not select Consultant Flexibilities as an EDC initiative, however, 2013 accomplishments include the creation of a new unit within PennDOT Central Office specifically to assist and monitor (oversight) or locally administered projects. As such, a manual was produced and distributed, of which FHWA-PA was a part of its creation. A regionalized construction inspection open-end contracting method was advertised as an example of assisting, and expediting, local projects.
National Implementation Goals for LPA Stakeholder Partnering

Progress Highlights

Arizona has successfully institutionalized an EDC partnering initiative through the development of the Arizona Local Public Agency (LPA) Stakeholder Council.

Virginia is developing plans for a broader stakeholder partnering group that would represent a broader spectrum of locally administered projects.
Programmatic Agreements

A programmatic agreement (PA) establishes a streamlined process for handling routine environmental requirements for commonly encountered project types. They usually set procedures for consultation, review and compliance with one or more federal laws, but can also address Tribal, State, and local laws. Programmatic approaches include Memoranda of Agreement (MOAs), Memoranda of Understanding (MOUs) and letters of agreement between resource and regulatory agencies regarding environmental process reviews, data collection, and regulatory compliance. By considering repetitive actions on a program basis rather than individually by project, efficiency is increased while maintaining appropriate consideration for the environment.

PAs may be developed on a regional, ecosystem, or watershed scale. The agreement may encompass multiple environmental resources within a defined geographic area or may focus on a specific resource, such as aquatic resources, parkland, or wildlife habitat. Modes should coordinate in production of PAs to identify opportunities to sign as co-signatories or to determine how to tier off to produce a mode-specific PA.

The objective of the EDC-2 PA initiative is to continue to build on the success of EDC1 by increasing the awareness of the benefits of implementing a PA and by creating additional PAs through expansion of existing agreements and creation of new agreements.

The emphasis under EDC-2 will be to continue to advance PAs with a focus on State and regional agreements, in particular with the United State Corps of Engineers (USACE), the United State Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS). The first phase of EDC to expand programmatic approaches successfully added scores of new agreements. Some of these new state-level agreements could be applied to other states or modified to include other action. Expanding existing agreements has lower implementation costs versus creating new agreements.

Progress Highlights

Alabama held an interagency Programmatic Agreement Workshop December 10-12, 2013 with US Army Corps of Engineers (USACE), US Fish and Wildlife Service (USFWS), Environmental Protection Agency (EPA), Alabama Department of Transportation (ALDOT) and the FHWA Division Office to develop a Regional General Permit, update several existing agreements, and discuss other agreement possibilities. FHWA, ALDOT and USFWS finalized an ESA MOA on December 2, 2013.

Connecticut is part of the New England group of states working with New England federal resource agencies to update the highway methodology used in New England.
In Delaware, a Section 106 Programmatic Agreement was fully executed on September 2013 between DelDOT, the Delaware State Historic Preservation Officer, DelMar Division and the Advisory Council on Historic Preservation-Office of Federal Agency Programs.

District of Columbia is developing a new Memorandum of Understanding for Section 4f.

On July 22, 2013, Iowa approved the Programmatic Section 4(f) Inapplicability Determination. This is a new PA for Iowa.

Maryland completed a Historic Highway Bridge Programmatic Agreement. FHWA, the Advisory Council on Historic Preservation, the Maryland Historic Trust and the Maryland State Highway Administration agreed and the PA was signed in July 2013.

With a grant from the STIC Incentive Program, New Hampshire DOT is creating a State Historic Architectural & Archeological Resource Database (SHAARD). SHAARD will act as a process management tool to assist with the processing of NHDOT and Local Public Agency (LPA) sponsored projects through Section 106 of the National Historic Preservation Act.

Oregon is revising their current ODOT-FHWA Programmatic CE agreement to incorporate MAP-21 changes.

In Puerto Rico, the Fish and Wildlife Service approved on January 14, 2013 a Blanket Clearance Letter for federally sponsored projects by Federal Highway Administration.

South Carolina has completed a General Concurrence with NOAA Fisheries that will handle coordination on Essential Fish Habitat. FHWA-SC and SCDOT recently updated and revised their Programmatic Agreement with the State Historic Preservation Office regarding Section 106 coordination.
SHRP 2 National Traffic Incident Management Responder Training

The SHRP 2 L12 project, Improving Traffic Incident Scene Management, now referred to as the National Traffic Incident Management (TIM) Responder Training, provides a significant move forward in developing a coordinated, multi-discipline training program for all emergency responders and those supporting TIM operations. The L12 project resulted in a TIM training curriculum that provides responders from the various stakeholder groups with a common set of core competencies that promote a shared understanding of the requirements for achieving the safety of responders and motorists, quick response, and effective communications at traffic incident scenes.

National Implementation Goal for Traffic Incident Management

Progress Highlights

Alaska conducted train-the-trainer sessions in November 2013.

Arizona has trained to date 1,343 responders (49 training sessions).

In **Florida**, there have been a total of 57 courses provided with 1393 participants and at least one class was held in each of the seven FDOT Districts.

Georgia has held 12 responder training sessions with a total of 424 responders trained.

Iowa held TIM training for mid-level managers and executive leadership in July 2013

Illinois held 27 sessions with 780 responders trained and 51 trainers trained.

Kansas hosted three train-the-trainer TIM Responder Training sessions under SHRP 2. 142 individuals have participated in Kansas City, Wichita, and Topeka.
Kentucky has completed training to six different agency types; 10 national training sessions; and 308 attendees trained.

Maryland conducted the National TIM Responder training in May 2013.

Missouri has trained 473 TIM Responders.

The Nebraska TIM Implementation Plan is in preparation. A State Implementation Committee was established and a kick-off meeting was held in November 2013.

New Hampshire has held 28 training courses for first responders to date and NH’s final implementation plan is in place.

New Mexico hosted the training in October, 2013.

Ohio has held six Train the Trainer workshops, resulting in over 200 responders being certified as TIM instructors. Ohio TIM instructors have conducted 4-hour TIM Responder classroom sessions throughout the State, resulting in over 6,125 responders being trained to date. ODOT, Ohio State Highway Patrol (OSHP) and the FHWA conducted a national webinar on Train the Trainer: Keeping the Momentum Going. ODOT has added TIM duties to the contractor’s Worksite Traffic Supervisor and will be making this position a requirement on the larger and more complex construction projects. Ohio has also launched a public awareness campaign for the TIM/Ohio QuickClear program, including a website, brochures and segments on local media outlets.

Puerto Rico held the San Juan TIM workshop and Executive TIM training on June 2013. An action plan for implementing TIM in the San Juan Metropolitan Area has been developed.

To date, Rhode Island has sponsored 3 Train the Trainer courses.

Tennessee held a TIM EDC Exchange on June 2013 in Nash, Knox, Memphis and Chattanooga. THP has already integrated the 4-hour course in their annual in-service training for all 800 troopers. The TIM training is POST certified for law enforcement credit and the TN Fire Commission has certified the training for fire training credit.

In Virginia over 700 responders have attended training.

Vermont hosted TIM training for First Responders on November 13 &14, 2013. Twenty people were in attendance. Vermont is currently working on developing a four hour training for all new state troopers at the Vermont State Police Academy.

In Wisconsin, the Traffic Incident Management Enhancement (TIME) Program has conducted nearly 60+ TIM Responder Training classes since October 2012. Since that time, over 700 first responders have been trained and equipped with the training materials to instruct their agency personnel in responder safety, safe and quick clearance, and interoperable communications.
For more about the Every Day Counts initiative, go to http://www.fhwa.dot.gov/everydaycounts/.