How Can DOT Operations and Maintenance Prepare for Extreme Weather Events?

Gregory C. Johnson, P.E.
Chief Operations Officer
Michigan Department of Transportation
November 17, 2012
Michigan’s Climate

Four Distinct Seasons
Michigan Facts

• Over 3,000 Miles of Shoreline
 (2nd Only to Alaska)
• Over 100,000 Miles of Roadway
• Over 10,000 Bridges
• 98 Islands
• Over 11,000 Inland Lakes
• At any Point in Michigan, you are never more than 85 Miles away from one of the Great Lakes
Michigan’s Climate Risks

- Change Level and Temperature of the Great Lakes
 - Risk to Tourism, Shipping, and Fishing
Michigan’s Climate Risks

- Impacts Local Weather Patterns
 - Potential for More Snow in Lake Effect
 - Less Ability to Moderate Weather
Michigan’s Climate Risks

- More Frequent and Intense Rain Events
 - Washout of Transportation Infrastructure
- Increased Frequency of Freeze/Thaw Cycles
Michigan’s Climate Risks

• Increased and Prolonged Summer Temperatures Extremes
 – Both Will Deteriorate Roads More Rapidly

• Changes to Maintenance Needs
Michigan’s Climate Risks

- Stress on Indigenous Vegetation and Wildlife
- Invasive Species More Tolerant of a Changed Climate
- Higher Incidence of Wildfires
What To Do

• Continue to Develop Asset Management Databases
• Data Will be Used to Identify Potential Risks
• Ideal Situation Would be to Have a set of Areas/Infrastructure That is at Greatest Risk
• Address These Risks Through Regular Transportation Program Process
What To Do (continued)

• Research Program in 2012 to Assess Available Climate Models, Compare Them to Asset Management Data and Prepare set of Infrastructure at Most Risk for Climate Change

• Looking for Research Conducted on Regional Climate Change Impacts
What Do These things Mean for Highway Operations? (Design, Construction, Systems Operations, and Maintenance)
Climate Change Design Considerations

• More Intense Storms – Strategy: Design Assets That are Less Impacted by the Effects of Climate Change
• Larger Hydraulic Openings for Bridges over Waterways
• Heavier and Lengthier Armoring of River and Stream Banks and Ditches to Prevent Erosion
• Investigate Greater Pavement Crowns to Move Runoff off of Pavement Quicker
Design Considerations (Intense Storms)

• Design of Additional in-system Detention to Meter Runoff Outflow

• Eliminate Bridge Design Elements That Could Make a Bridge Scour Critical
 – i.e. Piers in the River, Spread Footings, use More Sheet Piling Left in Place

• Design Terraced Vegetated Slopes Using a Variety of Plant Species
Design Considerations (Intense Storms – Cont’d)

• Design More Robust Pavement Markings That can be Seen During Wet/Night Conditions

• Larger Capacity Pumps/Pumping Stations for Below Grade Freeways to Prevent Flooding
Design Considerations (Hotter Drier Summers)

Strategy: Design Tougher, More Resilient, Lower Maintenance Roadways, Bridges, Facilities, and Roadsides

• Design Lower Maintenance Bridge Expansion
• Design Seed/Vegetation Mixtures That Create a Denser, Deep-rooted Vegetation Mat that is More Erosion Resistant
Design Considerations (Hotter Drier Summers – Cont’d)

- Eliminate Monoculture Roadside Vegetation Designs That may not Survive Extended Drought Periods or Invasive Species Attack

- Ensure all Roadside Building Designs are LEED Certified or Modified to be Energy Efficient
Climate Change Construction Considerations

- More Intense Storms – Strategy: protect motorists, workers, and the environment from hazards created in work zone by strong weather events
- Stronger specifications for protection of work under construction
Climate Change Construction Considerations (Cont’d)

• Stronger Specifications that require contractor response plans for work zone impacted by high intensity storms
Construction Considerations (Hotter and Drier)

Strategy: Protect Work in Progress From the Effects of Higher Temperatures for Both Short-term and Long-term Durability

- Encourage More Night/Cooler Weather Work to Prevent Damage Such as Slab Curling, Premature Cracking, Loss of Air Entrainment in Concrete Pavements, Rutting, and Flushing in Asphalt Pavements
Construction Considerations (Hotter and Drier – Cont’d)

• More Closely Monitor Moisture in Aggregate Piles
• Incorporate Materials Whose Performances are Less Variable in Weather Extremes
• Modify Vegetation Planting Periods to Ensure Optimal Growth and Survival
Construction Considerations (Hotter and Drier – Cont’d)

- Stronger Specifications for Dust Control and Wind Erosion
- Worker Safety During Extreme Heat Periods Must be Addressed
Climate Change
System Operations & Maintenance

More Intense Storms - Strategy:
Use Best Practices to Keep Transportation Infrastructure Operating as Safely and Efficiently as Possible During Increased Frequency and More Intense Winter Storms

• Increased Deployment and use of Roadway Weather Information Stations (RWIS) to Effectively Plan and Respond to Winter Storms
More Intense Storms (System Operations)

• Keep Motorists Informed of Hazardous Conditions/Roadway Closures Using Appropriate Technology (Changeable Message Boards, Etc.)

• Develop Stronger Contingency Response Plans for Extraordinary Winter Storms
System Operation and Maintenance Considerations – More Intense Storms

- Monitor potential hazard of snow accumulation during a more frequent storm period along barriers and plan for routine removal
- Create an appropriate winter maintenance budget that reflects the cost of responding to numerous and intensive storms in a manner that meets public expectation
System Operation and Maintenance Considerations – More Intense Storms (Cont’d)

• Create a Detailed Economic Model That Speaks to the Societal Costs of Delayed or Inappropriate Response to Winter Storms

• Routine Maintenance Items Such as Ditch and Drainage Structure Cleanout Must be Emphasized to Avoid Failure During an Intense Rainfall Event
System Operation and Maintenance Considerations – More Intense Storms (Cont’d)
System Operation and Maintenance Considerations – More Intense Storms (Cont’d)

- Monitor and clean, as needed, bike lanes, shoulders, and non motorized trails in vertical curve sag areas.
- Siltation, gravel, and other debris that present serious hazards to bicyclist may accumulate after winter plowing and heavy rainfall events.
System Operation and Maintenance Considerations – Hotter and Drier

Strategy: Use Best Practices to Keep Roadways and Roadsides in a Safe and Aesthetically Acceptable Condition During the Heat of Summer

- Make Sure Vegetation is Managed Appropriately During Drought Periods Near Roadsides That are Susceptible to Wildfires
- Monitor and be Ready to Respond Quickly to Pavement “Tenting” due to Excessive Heat
System Operation and Maintenance Considerations – Hotter and Drier (Cont’d)

- Monitor Health of Vegetation in Right-of-way That may be Stressed due to Extreme Weather or Invasive/New Northerly Migrating Insect Species and Remove/Replace, as necessary
Shore Rescission on Lake Superior

- Lower Lake Levels Have Exposed Softer Limestone Layers to More Intense Wave Action
- This has Caused Undermining and the Need to Relocate a Portion of US-41 Over 400’ Westward
Questions