Climate Change

Information, Challenges, and Strategies for Hawaii DOT

June 3, 2010
Workshop Purpose

- What is climate change?
- How will it affect state DOTs?
- What is the current status of federal legislation?
- What are proposed CEQ-NEPA requirements?
- How can state DOTs adapt to climate change?
- How can state DOTs reduce transportation GHG?
Workshop Overview

I. Climate Change Science, Sources, and Trends
II. The Importance of Climate Change to State DOTs
III. Federal Legislation
IV. Planning and NEPA Issues
V. Climate Adaptation
VI. Strategies to Reduce GHG Emissions from Transportation Sources
VII. Participant Workshop
I. Climate Change Science, Sources and Trends
What is climate change?

The United Nations Framework Convention on Climate Change (UNFCCC) defines Climate Change as:

“A change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.”

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
What is the “Greenhouse Effect”?

1. Solar energy passes through the atmosphere

2. Some energy is reflected back out to space

3. Earth’s surface is heated by the sun and radiates the heat back out towards space.

4. GHG in the atmosphere trap some of the heat
What is the evidence on temperatures?

![Global Temperatures Graph]

- **Annual Average**
- **Five Year Average**

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
What are the impacts at different temperature increases?

Source: Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change

Projected impacts of climate change

<table>
<thead>
<tr>
<th>Temperature Increase</th>
<th>Food</th>
<th>Water</th>
<th>Ecosystems</th>
<th>Extreme Weather Events</th>
<th>Risk of Abrupt and Major Irreversible Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Food**: Falling crop yields in many areas, particularly developing regions. Possible rising yields in some high latitude regions. Falling yields in many developed regions.
- **Water**: Small mountain glaciers disappear – water supplies threatened in several areas. Significant decreases in water availability in many areas, including Mediterranean and Southern Africa. Sea level rise threatens major cities.
- **Ecosystems**: Extensive Damage to Coral Reefs. Rising number of species face extinction.
- **Extreme Weather Events**: Rising intensity of storms, forest fires, droughts, flooding and heat waves.
- **Risk of Abrupt and Major Irreversible Changes**: Increasing risk of dangerous feedbacks and abrupt, large-scale shifts in the climate system.

Source: Stern Review, 2008
What are the scientific findings?

Climate Change 2007: The Physical Science Basis

- Developed by the Intergovernmental Panel on Climate Change (IPCC)

- Contributions from 2,000 scientists assessing the Earth’s environment and the effects of global warming

...a summary for policy makers...

There is 90% certainty that humans are the cause of global warming.

Notable findings in the report:

- Atmospheric CO\(_2\) levels are at their highest levels in 650,000 years.

- Avg global temperatures have risen ~1.3°F since the industrial age began.

- Sea level rose ~4.8 – 8.8“ worldwide during the 20th century, at a rate more than double that of the past decade
What is the physical evidence?

Arctic sea ice is retreating – a measurable change in climate that can be seen.

Source: NASA

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
How certain are the scientists?

- “Warming of the climate system is unequivocal…”
 -- Intergovernmental Panel on Climate Change

- “An overwhelming body of scientific evidence paints a clear picture: climate change is happening, it is caused in large part by human activity, and it will have many serious and potentially damaging effects in the decades ahead.”
 -- Pew Center on Climate Change
What is the evidence of climate change?

- 14% increase in human GHG since 1990 – USA
- 26% increase in human GHG since 1990 – world
- GHG levels are at highest in 1000s of years
- 2000-2009 was the warmest decade on record worldwide
- Heat stored in oceans has increased substantially
- Sea surface temperatures have been higher during the past three decades than at any other time since large-scale measurement began in the late 1800s.
- In recent years, a higher percentage of precipitation in the United States has come in the form of intense single-day events.
- 8 of top 10 years for extreme one-day precipitation events occurred since 1990.
- The occurrence of abnormally high annual precipitation totals has increased.
- Intensity of tropical storms in the Atlantic, Caribbean, and Gulf has risen noticeably over the past 20 years.
- 6 of the 10 most active hurricane seasons have occurred since the mid-1990s.

Source: EPA, Climate Change Indicators in the U.S., May 2010
What is the evidence of climate change? (continued)

- Sea level worldwide has increased at a rate of roughly 0.6” per decade since 1870.
- Sea level increase has accelerated to more than 1”/year in recent years.
- Oceans have become more acidic over the past 20 years, and studies suggest that the ocean is substantially more acidic now than it was a few centuries ago. Rising acidity is associated with increased levels of carbon dioxide dissolved in the water, and affects sensitive organisms such as corals.
- Sept 2007 had least Arctic sea ice of any year on record, followed by 2008 and 2009.
- Arctic sea ice in 2009 was 24 percent below the 1979-2000 historical average.
- Glaciers in U.S. and around the world have generally shrunk since the 1960s and the rate at which glaciers are melting appears to have accelerated over the last decade.
- Glaciers worldwide have lost more than 2,000 cubic miles of water since 1960.
- Average length of the growing season in the lower 48 states has increased by about two weeks the since beginning of the 20th century.
- North American bird species have shifted their wintering grounds northward by an average of 35 miles since 1966, with a few species shifting by several hundred miles.

Source: EPA, Climate Change Indicators in the U.S., May 2010
How widespread are climate change concerns?

- Over 2000 leading scientists worldwide contributed to IPCC report
- 33 U.S. states have developed climate change action plans
- U.S. Climate Action Partnership includes 23 major corporations and 5 nongovernmental groups which have called for U.S. Congress to enact strong GHG targets to achieve significant reductions in GHG:

How is climate change affecting Hawai’i?

- Rapid rise in air temperature in the past 30 years (0.3 degrees F per decade). Warming rate at high elevations is faster than global rate.

- Sea level projected to reach over 3 feet above present by 2100.

- Other indicators
 - Rainfall and stream flow have decreased
 - Rain intensity has increased
 - Sea level and sea surface temperatures have increased
 - The ocean is acidifying

Source: Hawaii’s Changing Climate; Briefing sheet, 2010, Dr. Chip Fletcher, School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa
How is Hawai‘i responding to climate change?

- Ocean Resources Management Plan (ORMP) Workgroup recognizes need to plan for adaptation to climate change impacts
 - ‘Proposed framework for action November 2009
- Hawaii DOT preparing Hawaii Statewide Transportation Plan (HSTP)
 - STP staff follow efforts underway in Hawaii
 - Monitors activities and connections between transportation and the climate change issues within and among various branches of government
 - 70% of energy needs by renewable energy and efficiency by 2030
- Climate Change Solutions Act 234, 2007 Legislature
 - Reduce GHG to 1990 levels by 2020
 - Effects of GHG emissions and ways/need for reductions
 - Workplan to Legislature 2010, Recommendations 2011
- Food & Energy Self-Sufficiency- Act 73, 2010 Legislature
 - Barrel tax increase, Report to legislature in 2012
Where do all those GHG come from?

Comparison: Annual* & Cumulative** CO₂ Emissions

Countries

** Cumulative Emissions from 1850-2000, CAIT WRI
What GHG targets have been set?

- Scientists recommend **60-80% GHG reduction below 1990 level by 2050**
- Many states and countries have adopted targets in this range
- President Obama’s budget: **80% GHG reduction below 2005 by 2050**
- Waxman-Markey bill: **17% below 2005 by 2020 and 83% below 2005 by 2050**
- Kerry-Lieberman bill: **17% below 2005 by 2020 and 83% below 2005 by 2050**
What is transportation’s share of U.S. GHG?

Source: U.S. DOT Report to Congress, 2010
What are U.S. transportation GHG trends?

- U.S.DOT Report to Congress, 2010

<table>
<thead>
<tr>
<th>Source</th>
<th>Change, 1990-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>All U.S. GHG Sources</td>
<td>15%</td>
</tr>
<tr>
<td>U.S. Transportation</td>
<td>27%</td>
</tr>
<tr>
<td>Light Duty Vehicles</td>
<td>24%</td>
</tr>
<tr>
<td>Freight Trucks</td>
<td>77%</td>
</tr>
<tr>
<td>Commercial Aircraft</td>
<td>4%</td>
</tr>
</tbody>
</table>
How much will transportation GHG increase?

- **U.S.**: GHG from all transportation modes are projected to remain almost constant through 2030 – but light duty vehicle GHGs will actually decline slightly and freight GHG will increase significantly.

- **World**: GHG emissions from transportation are expected to rise sharply; soon GHG emissions from transportation in the developing world will greatly exceed those of the U.S.
What are the global trends in vehicle ownership and use?

- Today, car ownership in the U.S. is greater than in India, China, and Brazil combined.
- By 2050, car ownership in those countries will be 5x greater than in the U.S.

Why is vehicle “decarbonization” necessary?

“In the long term, carbon free road transport fuel is the only way to achieve an 80-90% reduction in emissions, essentially “decarbonization.”

--The King Review for the U.K. Government, by Professor Julia King, Vice-Chancellor of Aston University and former Director of Advanced Engineering at Rolls-Royce plc, March 2008

“[I]n the period beyond 2100, total GHG emissions will have to be just 20% of current levels. It is impossible to imagine this without decarbonization of the transport sector.”

Summary

- Climate change is real
- 60-80% GHG reduction is needed
- It is a global and cumulative problem
- In developing countries, GHG emissions will increase substantially
- Delay will magnify the difficulty of reducing GHG
- Hawai‘i is especially vulnerable to climate change
II. The Importance of Climate Change to State DOTs
Moving away from our dependence on oil and reducing GHG emissions will be the greatest challenge to decision-making for transportation policies, programs, and investments in the coming decades.

Other sectors are moving on climate change policies faster than transportation.

States are adopting sweeping policies with little or no input from transportation agencies or experts.
“We know we need to get ready for a world in which energy will only be more expensive.”

Wal-Mart will cut 20 MMT of GHG from its supply chain by the end of 2015 — equivalent to removing >3.8 million cars from the road for a year.

Wal-Mart is already requiring suppliers to cut packaging, selling “Walmart-label” CFL bulbs in Mexico, and labelling clothes as cold-water wash.

Should state DOTs take a page from Wal-Mart’s book?
Petroleum Dependence for Electricity in Hawai‘i

Hawai‘i is very different from the continental U.S.

Petroleum dependence for electricity – top six states

Source: November 13, 2008 Hawai‘i's Energy Future & Solutions, Briefing at the Hawai‘i State Capitol, DBEDT

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
DOE expects slight decline in LDV GHG emissions nationally

GHG Emissions from Light-Duty Vehicles (USDOE, Annual Energy Outlook 2009)
U.S. VMT growth rates are declining

- VMT growth has been steadily declining since the 1950s
- VMT growth slowed to about 1.5% in early 2000s
- VMT growth was actually negative in 2008, pattern of upward growth in 2009
- VMT is affected by population, economy, transportation prices, demographics, land use
- AASHTO supports reducing VMT growth rate to 1% per year
VMT closely linked to disposable income

Light Duty Vehicle Miles Travelled (1 of 3)

Source: Annual Energy Outlook 2009 Reference Case d041409a

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
DOE expects VMT and MPG both to rise

Light Duty Vehicle Miles Travelled (2 of 3)

Source: Annual Energy Outlook 2009, Reference Case d041409a

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
As VMT and MPG rise, GHG is nearly flat
What should the GHG reduction target be for the transportation sector?

- Economists:
 - Reduce GHG emissions as cost-effectively as possible, even if that means much larger reductions in some sectors than others
 - Evidence is accumulating that reducing transportation GHG 80% would be more costly than same % reduction in other sectors
 - Ergo: Transportation GHG reduction targets probably should be lower

- Political reality:
 - Transportation will be expected to contribute its "fair share"
 - Room for debate about what "fair share" means.
 - Often-cited goal is **60 to 80%** from current levels.
Policy debate can be intense

- **Climate skeptics**: Climate change isn’t happening, or isn’t human-induced
- **Environmental view**: Transform land use, increase transit, and reduce VMT
- **Techno-optimist view**: Transform vehicle/fuel technology and improve highway/driver operations
- **Pragmatic view**: Combination -- mostly vehicles/fuels, some operational efficiency, plus modest role for land use, transit, and VMT moderation
State Climate Action Plans

- Highly “aspirational”
- Managed by state environmental agencies
- Steering Committees included multiple environmental advocates and rarely had transportation agency reps
- State DOT involvement was at a technical advisory level, whose input was often rebuffed
- Example: VT strategies would reduce 2030 VMT from 10.5 B (base case) to 3.9 B
State Climate Plans – Transportation Share Of GHG Reductions Varies Widely

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>% Reduction in Transportation GHG</th>
<th>% of all GHG Reductions from Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhode Island</td>
<td>2020</td>
<td>N/A</td>
<td>20%</td>
</tr>
<tr>
<td>New York</td>
<td>2020</td>
<td>18%</td>
<td>7%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>2020</td>
<td>N/A</td>
<td>7%</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>2025</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>Maine</td>
<td>2020</td>
<td>23%</td>
<td>27%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2025</td>
<td>27%</td>
<td>5%</td>
</tr>
<tr>
<td>Oregon</td>
<td>2025</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2020</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>Colorado</td>
<td>2020</td>
<td>22%</td>
<td>6%</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2020</td>
<td>31%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
State Climate Plans – Transportation
Elements Vary All Across the Map

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>Vehicle</th>
<th>Low Carbon Fuels</th>
<th>Smart Growth and Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>2020</td>
<td>46%</td>
<td>10%</td>
<td>31%</td>
<td>14%</td>
</tr>
<tr>
<td>NC</td>
<td>2020</td>
<td>35%</td>
<td>12%</td>
<td>38%</td>
<td>15%</td>
</tr>
<tr>
<td>SC</td>
<td>2020</td>
<td>14%</td>
<td>55%</td>
<td>29%</td>
<td>1%</td>
</tr>
<tr>
<td>CT</td>
<td>2020</td>
<td>51%</td>
<td>38%</td>
<td>8%</td>
<td>2%</td>
</tr>
<tr>
<td>ME</td>
<td>2020</td>
<td>53%</td>
<td>25%</td>
<td>21%</td>
<td>1%</td>
</tr>
<tr>
<td>MD</td>
<td>2025</td>
<td>24%</td>
<td>12%</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>NY</td>
<td>2020</td>
<td>59%</td>
<td>11%</td>
<td>27%</td>
<td>4%</td>
</tr>
<tr>
<td>PA</td>
<td>2025</td>
<td>45%</td>
<td>36%</td>
<td>18%</td>
<td>0%</td>
</tr>
<tr>
<td>MN</td>
<td>2025</td>
<td>15%</td>
<td>35%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>VT</td>
<td>2028</td>
<td>21%</td>
<td>14%</td>
<td>49%</td>
<td>17%</td>
</tr>
</tbody>
</table>
Hawai‘i Clean Energy Initiative

The Hawaii Clean Energy Initiative was launched on January 28, 2008 with the signing of a Memorandum of Understanding between the State of Hawaii and the U.S. Department of Energy

“...the Department of Energy will help Hawaii lead America in utilizing clean, renewable energy technologies.”

Governor Lingle

“Hawaii’s success will serve as an integrated model and demonstration test bed for the United States and other island communities globally...”

Assistant Secretary Karsner

Source: November 13, 2008 Hawai‘i’s Energy Future & Solutions, Briefing at the Hawai‘i State Capitol, DBEDT
Hawai‘i Clean Energy Initiative (continued)

Partnership to accelerate system transformation:

• Achieve a 70% clean energy economy for Hawai‘i within a generation
• Increase Hawai‘i’s security
• Capture economic benefits of clean energy for all levels of society
• Foster and demonstrate innovation
• Build the workforce of the future
• Serve as a model for the U.S. and the world
Hawaii has a wealth of renewables:
estimated @ 150% of current installed capacity

Source: November 13, 2008 Hawai‘i’s Energy Future & Solutions, Briefing at the Hawai‘i State Capitol, DBEDT
Hawaiʻi Clean Energy Solutions Act 234

Caps state GHG at 1990 levels by 2020

Motivation:
- Islands are likely to be disproportionately affected
- All places/people are responsible for GHG mitigation
- Hawaiʻi is 0.3% of U.S. GHG emissions
 - Not in spite of… because of
 - Leadership role in U.S. and Pacific

A mechanism to make HCEI a reality

Emphasizes market-based mechanisms
- Minimize leakage

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
What are Other State DOTs Doing on Climate Change?

- New York: http://www.nysdot.gov/nasto/repository/WS4d_Zamurs%20_AASHTO_0.ppt
GHG reduction debates overshadow 2 more challenges bearing down on state DOTs

- **New revenue sources**: New revenue sources are needed that are appropriate in a climate change-dominated world, with electric vehicles and new fuels.

- **Climate adaptation**: Huge funding increases, risk-based planning and programming, and tough policy decisions will be needed to adapt to a changing climate.
Summary

• DOTs may be expected to reduce transportation GHG by 60-80% by 2050
• Many state climate action plans include “aspirational” transportation elements that have not been thoroughly analyzed or vetted
• VMT reductions may be expected or required
• Lower VMT and more fuel efficient cars will exacerbate the transportation revenue dilemma – new revenue sources will be needed
III. Federal Climate Change Legislation
Federal Climate Legislation and Policy are Taking Shape

- AASHTO position
- EPA proposed “endangerment” finding
- (section 202(a) of CAA
- “Cap and Trade” bills
- 2010 Senate Bill - Kerry-Lieberman
AASHTO Position on Climate Change

- Major R&D to decarbonize vehicles/fuels (comparable to “man on the moon”)
- Reduce VMT growth to 1%/year
- Double transit ridership
- Increase intercity passenger rail
- $100 M/year Federal funding for coordinated land use/transportation planning
- Oppose GHG conformity requirement
- See AASHTO “Real Transportation Solutions” at http://www.climatechange.transportation.org/
EPA can regulate GHG under existing Clean Air Act (CAA)

December 2009 EPA finding:
- Atmospheric concentrations of GHG “endanger” public health and welfare (per CAA section 202(a))
- Emissions of GHG from new motor vehicles “contribute to” air pollution which is endangering public health and welfare

Based on this finding EPA is obligated to regulate GHG (e.g., GHG standards for autos)

GHG conformity possible, but not likely

Endangerment finding challenged by several states
Federal Climate Legislation - Status

• House: Passed Waxman-Markey bill on the floor in 2009
• Senate: Boxer-Kerry bill reached floor in 2009, then stalled
• Senate: Kerry-Lieberman introduced May 12, 2010
• President Obama: Strongly supports cap-and-trade legislation
Federal Legislation –
Major Elements of Climate Bills

- **Cap-and-Trade**
 - Sets “cap” on GHG emissions; cap declines over time

- **Energy Production**
 - Provides incentives and other support for production of renewable energy (and maybe nuclear, oil & gas)

- **Energy Efficiency**
 - Provides incentives and tighter regulations to promote greater efficiency – buildings, appliances, vehicles, etc.

- **Transition Assistance**
 - Provides assistance to ease impact of higher energy prices on consumers and U.S. industries

Source: Bill Malley, Perkins Coie
2010 Senate Bill: Kerry-Lieberman – American Power Act

- Introduced May 12, 2010
- Calls for reductions from 2005 baseline
 - 17% by 2020
 - 42% by 2030
 - 83% by 2050
- Sets national GHG emissions cap
 - Transportation fuels under the cap
 - Tptn fuel producers and importers would purchase emissions allowances at a fixed price ($12 - $25/ton carbon)
 - Tptn carbon price would increase at 3% over inflation/year
- Imposes transportation planning requirements on states and large MPOs
States and large MPOs (over 200,000 population) must:
- Develop GHG targets and strategies
- Integrate GHG targets and strategies into plans
- Demonstrate progress in stabilizing and reducing GHG emissions to contribute to achievement of national targets

USEPA is to:
- Issue standardized emissions models and methods

USDOT is to:
- Determine whether state and MPO plans comply
- Administer performance awards (additional funding) for states with approved plans
2010 Senate Bill: Kerry-Lieberman – American Power Act (continued)

- Provides transportation infrastructure & planning funding
- $6.25 billion annually
 - One-third to Highway Trust Fund up to $2.5 b/yr
 - One-third to TIGER grant program $1.875 b/yr
 - One-third for transportation planning and implementation $1.875 b/yr
- Pre-empts states from implementing mandatory GHG reductions and restricts EPA ability to regulate under CAA
- Large portion of funds collected through cost of carbon related to fuels would be diverted to uses other than transportation
Federal Climate Legislation –
Basics of Cap and Trade

How a cap-and-trade program works:

– Set a cap on total GHG emissions, and reduce it over time
 • 17 to 20% reduction by 2020
 • 83% reduction by 2050
– Issue "allowances" to emit GHGs within the cap
 • Some allowances are auctioned; others distributed free
– “Allowances” are an economic asset that can be traded
 • Receiving a free allowance is like receiving dollars
– “Offsets” can be purchased in lieu of allowances
 • An offset is obtained by paying for a reduction made by sources outside the cap, including sources in other countries
 • Example: pay to avoid deforestation in a developing country

Source: Bill Malley, Perkins Coie
Federal Climate Legislation – Impact on Transportation Fuel Prices

- How would the House and Senate bills affect the price of transportation fuels?
 - EPA analysis of House Bill (6/23/09) estimated House bill would raise gas prices by 14 cents/gallon by 2015
 - EPA makes two key assumptions:
 - Relatively low cost to adopt new technologies that reduce GHG emissions, such as carbon capture and sequestration (CCS)
 - Relatively widespread use of "offsets"
 - Without these assumptions, prices could be much higher.
 - EPA has not yet released an estimate of the gasoline price impacts of the 2010 Senate bill

Source: Bill Malley, Perkins-Coie
Federal Climate Legislation – Impact on Transportation Fuel Prices

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA Projection</td>
<td>$0.14</td>
<td>$0.24</td>
<td>$0.69</td>
</tr>
<tr>
<td>CRA: Base Case</td>
<td>$0.19</td>
<td>$0.38</td>
<td>$0.95</td>
</tr>
<tr>
<td>CRA: "Low-Cost"</td>
<td>$0.17</td>
<td>$0.34</td>
<td>$0.84</td>
</tr>
<tr>
<td>CRA: "High-Cost"</td>
<td>$0.36</td>
<td>$0.71</td>
<td>$1.82</td>
</tr>
<tr>
<td>CRA: "No International Offsets"</td>
<td>$0.52</td>
<td>$1.08</td>
<td>$2.79</td>
</tr>
</tbody>
</table>

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
House and Senate Bills Have Small Impact on Transportation GHG

EPA projects that the price signal from cap-and-trade would have little effect on transportation emissions

"The increase in gasoline prices that results from the increase in the carbon price ... is not sufficient to substantially change consumer behavior in their vehicle miles traveled or vehicle purchases"

"The relatively modest indirect price signal on vehicle manufacturers from this particular cap-and-trade policy creates little incentive for the introduction of low-GHG automotive technology."

Source: http://www.epa.gov/climatechange/economics/economicanalyses.html
IV. Planning and NEPA Issues
Federal Legislation – Transportation Planning Provisions (proposed)

- **TARGETS AND STRATEGIES:** States and TMA MPOs must develop GHG reduction targets and strategies, as part of transportation plans
- **PROGRESS:** States and TMA MPOs must “demonstrate progress in stabilizing and reducing” GHG emissions
- **METHODOLOGIES:** EPA must issue regulations on transportation GHG goals, standardized models, methodologies, and data collection
- **CERTIFICATION:** US DOT shall not certify state or MPO plans that fail to “develop, submit or publish emission reduction targets and strategies”
- **PERFORMANCE REQUIREMENTS:** US DOT must establish requirements, including performance measures, “to ensure that transportation plans… sufficiently meet the requirements…, including achieving progress towards national transportation-related GHG emissions reduction goals.”
Transportation Planning – Many GHG Issues and Implications

- GHG planning will be impacted by both state and federal policies
- Both state DOTs and MPOs will be affected
- Inventories of transportation GHG will probably be required
- GHG reduction targets will probably be required
- Methodologies to predict GHG for different plans and strategies will be needed
- Many Clean Air Act planning issues will carry over into GHG planning – modeling limitations, induced demand, VMT reduction expectations, uncertainties about travel behavior, land use expectations, etc.
- A major new issue – high degree of uncertainly about future potential new technology and fuels to reduce GHG
- Another key issue -- whether/how to include “upstream” and “life cycle” GHG of transportation
NEPA: Draft CEQ Guidance

- Draft issued by CEQ on February 18, 2010
- Comments were due: May 24, 2010
- Proposal:
 - Evaluate proposed actions that are reasonably expected to cause direct emissions of 25,000 metric tons or more of CO2-equivalent on an annual basis
 - Quantify cumulative emissions over the life of the project
 - Consider impact of climate change on the project
NEPA: Potential GHG Considerations

- Emissions from vehicles *using the highway*
 - In no-action and build alternatives
 - Usually treated as *direct* emissions in NEPA air quality analysis
- *Construction-related* emissions
- *Up-stream emissions* from fueling cycle (drilling, refining, shipping, etc.) and vehicle cycle
- *Others?*
 - Life cycle emissions?
 - Emissions effects of land use changes, roadway maintenance and lighting, etc.
NEPA: Roadway GHG Emissions

25,000 metric tons = 43,000,000 VMT/year or about 120,000 VMT/day

– Examples:
 • One-mile highway with 120,000 new ADT
 • Two-mile highway with 60,000 new ADT

– Action that would increase VMT by 120,000/day (NEW VMT) would trigger analysis, with all else being equal (e.g. speeds, congestion, fleet mix, etc.)
NEPA: Future Roadway GHG Emissions

- 25,000 tons is based on annual emissions over life of the project
- **Future fuel economy** projected by US DOE
 - 2020 fleet - ~14% more fuel efficient than 2010 fleet; raises VMT threshold to 137,000 VMT/day
- **Upstream and downstream emissions?**
 - Fuel supply (well to pump) and vehicle manufacture and disposal included in EPA national inventories
 - Proposed approach would add 40% to emissions generated to account for upstream and downstream emissions
 - 120,000 VMT becomes 86,000 VMT IF 40% and upstream/downstream emissions included
• Methodologies to quantify construction emissions is dated
• But, based upon NY procedures
 – 25,000 metric tons could result from 30-50 lane-miles of new road work
 – Emissions vary widely
• *Construction emissions would be annualized over life of project*
NEPA: Construction GHG Emissions
Source: NYSDOT

<table>
<thead>
<tr>
<th>Type of Improvement</th>
<th>Construction Energy Consumed per Rurala-Lane-Mile (10^9 Btu/mi)</th>
<th>CO2, tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>New construction</td>
<td>12.70</td>
<td>637</td>
</tr>
<tr>
<td>Relocation</td>
<td>10.50</td>
<td>526</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>5.20</td>
<td>261</td>
</tr>
<tr>
<td>Restoration and rehabilitation</td>
<td>2.30</td>
<td>115</td>
</tr>
<tr>
<td>Resurfacing</td>
<td>0.75</td>
<td>38</td>
</tr>
<tr>
<td>Major widening</td>
<td>5.00</td>
<td>251</td>
</tr>
<tr>
<td>Minor widening</td>
<td>1.90</td>
<td>95</td>
</tr>
<tr>
<td>New Bridges</td>
<td>192</td>
<td>9624</td>
</tr>
<tr>
<td>Bridge Replacement</td>
<td>222</td>
<td>11128</td>
</tr>
<tr>
<td>Major rehabilitation</td>
<td>134.4</td>
<td>6737</td>
</tr>
<tr>
<td>Minor rehabilitation</td>
<td>11.91</td>
<td>597</td>
</tr>
</tbody>
</table>

\(a\) Increase rural energy consumption by 20% for urban construction
NEPA: Projects Potentially Triggering GHG Analysis

- New 6-lane bridge,
 - 1.2 miles long, 100,000 ADT, 70 mph (in 2020, 114,400 ADT)
- New 4-lane highway,
 - 3.5 miles long, 40,000 ADT, 70 mph (2020, 45,800 ADT)
- New 2-lane highway,
 - 6 miles long, 25,000 ADT, 60 mph (2020 ADT 28,600)
- Widening existing highway –
 - 6 to 10 lanes, 13 miles, speeds increase from 60 to 70 mph (2020 volumes could increase by 14%)
- Transit Projects - Light-Rail, Heavy-rail, Inter-city Rail?
NEPA: Also Consider Climate Impacts on Project

• Climate Adaptation Planning
 – Discuss *climate change effects that should be considered in project development* such as flooding in low lying areas, development of coastal infrastructure
 – Also discuss *reasonably foreseeable future conditions* with no action
• Guidance provides references to useful materials and links.
It all depends…

- What emissions sources are included in total?
- How are direct and indirect emissions defined?
- Life cycle emissions?
- What analysis year (or years) are used?
- Speed assumptions?
- Fleet assumptions?
- New VMT vs. VMT shifted from elsewhere?
- Many questions…
Recent History – Court Rulings on NEPA/GHG

3 cases **overturned** FONSI/EA/EIS for lack of climate analysis:
- Center for Biological Diversity et al. v. NHTSA
- Mid States Coalition for Progress v. Surface Transportation Board
- Border Power Plan Working Group v. DOE

4 cases **upheld** lack of climate analysis or sufficiency of analysis:
- Audubon v. DOT, 2007
- Friends of the Earth v. Mosbacher, 2007
- Mayo Foundation v. Surface Transportation Board, 2006
DEIS for Columbia River Crossing

- Won national award for GHG analysis from National Association of Environmental Professionals
- DEIS issued May 2008
- Project is for congested river crossing between Portland OR and Vancouver WA
- Estimated cost of $3.1 - $4.2 billion
- 4 build alternatives – all are a combination of transit (BRT or LRT) and improved highway capacity
The Interstate Bridge I-5 over the Columbia River

- 2 side by side bridges
- Northbound built in 1917, southbound built in 1958
- 3 lanes each direction
- The only red light on I-5 from Canada to Mexico
DEIS for Columbia River Crossing
- GHG Results

• Build alternatives have lower GHG than no-build
• Relatively small differences among build alternatives
• Transit GHG emissions varied substantially
• Highest GHG: The alternative with more transit, higher toll, and less highway improvement

Source: Colin McConnaha, Parametrix, Inc.
One Emerging Tool: GreenSTEP

GreenSTEP = Greenhouse gas State Transportation Emissions Planning model

- A statewide planning model to help Oregon develop a statewide transportation strategy on greenhouse gas (GHG) emissions
- Complements metropolitan travel demand models and ODOT’s integrated statewide model
- Peer Review by Oregon travel modelers and experts in other disciplines
- Many elements have been estimated using 2001 NHTS data
- Open source model developed and implemented in open source software (R programming language)
- Partially developed with FHWA SPR program funds

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
GreenSTEP Overview

Individually Household Level

- Synthetic Household Generation
- Urban area land use and transportation system characteristics
- Household vehicle ownership
- Household vehicle travel
- Household vehicle characteristics

Aggregately Level

- Demand management program adjustments to VMT
- Heavy vehicle VMT
- MPG adjustments due to congestion
- Fuel consumption by type
- CO2 equivalent emissions by fuel type (including well to wheels)

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
GreenSTEP Inputs

- Demographic changes
- Relative amounts of development occurring in urban and rural areas
- Metropolitan and other urban area densities
- Urban form
- Amounts of metropolitan area public transit service
- Highway capacity
- Vehicle fuel efficiency
- Vehicle ages

- Electric vehicles
- Fuel & carbon pricing
- VMT pricing
- Demand management
- Effects of congestion on fuel economy
- Carbon content of fuels – including well to wheels impacts
- CO2 production from electrical power use for transportation
GreenSTEP can Analyze
Many Different Strategies

Fuel Economy & Costs

Urban Planning

Vehicle Tech & Fuel

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Summary

- Transportation planning process will need to consider GHG emissions and climate change impacts
- CEQ Draft Guidance will impact required NEPA Analysis
- Consider both
 * impact of project on GHG; and
 * impact of climate change on project
- Tools will be needed to evaluate GHG emissions
- Documentation will be important
- Mitigation actions can be helpful
V. Climate Adaptation for Transportation

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Why Transportation Agencies Should Plan for Adaptation

- Sea level rise & storm surges
 - Destruction of bridges
 - Erosion & permanent inundation of roads
 - Disruption of evacuation routes & road network
 - Bridge clearance limitations
- Other types of impacts
 - Increased flooding
 - Pavement and rail buckling
 - Increased flooding
 - More severe inland storms
 - Increased maintenance

Source: http://mceer.buffalo.edu/research/Reconnaissance/Katrina8-28-05/BiloxiBay1/09lg.jpg
“Actions by individuals or systems to avoid, withstand, or take advantage of current and projected climate changes and impacts. Adaptation decreases a system’s vulnerability, or increases its resilience to impacts.”

--Pew Center on Climate Change
Potential Impact of Climate Change on U.S. Transportation (TRB Special Report 290)
Climate change will affect every mode of transportation and every region in the United States, and the challenges to infrastructure providers will be new and often unfamiliar.

State and local governments and private infrastructure providers will need to incorporate adjustments for climate change into long-term capital improvement plans, facility designs, maintenance practices, operations, and emergency response plans.
• **Design standards** will need to be re-evaluated and new standards developed as progress is made in understanding future climate conditions and the options for addressing them.

• **Transportation planners** will need to consider climate change and its effects on infrastructure investments. Planning timeframes may need to extend beyond the next 20 or 30 years.

• **Institutional arrangements for transportation planning and operations** will need to be changed to incorporate cross jurisdictional and regional cooperation.
States Focusing on Climate Adaptation

- Coastal states are most concerned
- Multi-sector reviews of vulnerability
- Often led by resource agencies
- State DOT role -- significant to minor
- Still early on the learning curve

- California
- Pennsylvania
- Maryland
- Washington
- Hawaii
- Alaska
- Florida
- Massachusetts
- North Carolina
Implications for Design

- Changes in bridge height
- Changes in bridge foundation and superstructure
- Changes in materials specifications
- Changes in suspended and cable-stay bridges to withstand more severe wind and turbulence
- Changes in culvert design, capacity, and location
- Changes in slope design
- Changes in pavement drainage systems
Implications for Maintenance/Operations

- Pavement rutting and rail buckling
- Longer construction season
- Closures and detours due to rock slides, soil erosion, flooding
- Speed reductions
- Flooding of culverts
- Change in weight restrictions
- More grass cutting/less snow plowing
- Work crew limitations during severe heat periods
Implications for Environmental Reviews

• In NEPA process, sponsor must consider project vulnerability to future climate change
• US ACE may raise new issues in wetland permitting due to climate impacts
• USCG may raise climate impacts in bridge permitting
• DOI may raise issues & require more analysis for ESA, due to uncertainty of climate impacts on species
“A Framework for Climate Change Adaptation in Hawaii”

- Issued November 2009
- Collaborative effort of the Ocean Resources Management Plan Working Group with assistance of University of Hawaii Center for Island Climate Adaptation and Policy
- “It is critical for the State to act now in order to prepare for … climate change so that we can better withstand the negative impacts and take advantage of positive opportunities.”
Proposed Framework:
A. Build Climate Change Adaptation Team
B. Develop and Adopt a Long-Term Vision
C. Identify Planning Areas and Opportunities
D. Scope Climate Change Impacts to Major Sectors
E. Conduct a Vulnerability Assessment
F. Conduct a Risk Assessment
Next Steps after Framework:
1. Prioritize areas for adaptation planning
2. Set preparedness goals
3. Develop, select, and prioritize preparedness actions
4. Implement preparedness plan
5. Monitor progress and update plan as appropriate
Transportation concerns identified in Framework:

- Submersion of vital transportation infrastructure due to sea level rise and flooding
- Migration of beaches over coastal lands due to wave climatology
- Increased dependence on ocean transportation networks due to higher fuel cost and submersion of roads and rails
- Higher cost of fuel and drive for clean energy increases need for public transit options
Results – Gulf Coast Study
Transportation Planning

- Climate change is rarely considered today, but the longevity of infrastructure argues for its integration

- Current practice focusing on a 20-year time frame is not well-suited to the assessment of impacts due to the natural environment
 - Private sector planning horizon reported to be much shorter
 - Planning for operations in its infancy

- It is useful to examine the vulnerability of the intermodal system in addition to specific facilities
Gulf Coast Study on Climate Change – Highways and Relative Sea Level Rise

Results – Gulf Coast Study
Highways Vulnerable to Relative Sea Level Rise

Baseline (Present Day) 4 Feet of Sea Level Rise

Source: Cambridge Systematics analysis of U.S. DOT Data.
Gulf Coast Study on Climate Change – Range of Adaptation Approaches

Implications…

Range of Adaptation Responses

- **Maintain and manage**
 - Absorb increased maintenance / repair costs
 - Improve real-time response to severe events

- **Strengthen structures / protect facilities**
 - Design changes when rebuilding / new investment
 - Promote buffers

- **Enhance redundancy**
 - Identify system alternatives

- **Relocate / avoid**
 - Move or abandon existing facilities
 - Site new facilities in less vulnerable locations

Source: Mike Savonis, FHWA

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Monitor bridges through the Bridge Inspection program and Scour program to ensure safety and develop measures (armoring) to protect the structure until proposed replacement.

Projects addressed on a case-by-case basis where flooding issues have been identified.

Bridge projects with low-chord below 10-year flood are subject to more intense review. Two foot clearance preferred but ROW, Environmental, Cultural impacts must be considered.
MASSDOT: Mid-Term Recommendations Being Considered for Coastal Areas

- Map coastal assets, using Light Detection and Ranging (LIDAR) survey
- Develop GIS based asset inventory
- Perform sea level rise vulnerability assessment
- Identify & prioritize critical transportation assets
- Develop design requirements on a project-by-project and priority basis
• Model identified potential impacts of climate change of the UK road network
• Resulted in a climate change adaptation strategy
• Strategy addresses design, construction, and maintenance
• Includes a risk appraisal for all operations
Summary

- All modes of transportation threatened
- Affects all transportation functions – planning, programming, environment, location, design, construction, operations, emergency planning – and budgeting
- Low lying coastal areas especially vulnerable
- Risk assessment and prioritization is key
- Transportation planners need to be aware of and adapt to climate change impacts on our transportation infrastructure
- Looming in future: where not to build or re-invest?
VI. Strategies to Reduce Transportation GHGs
Five GHG Reduction “Legs”

Transportation GHG reduction has 5 legs:

1. Vehicle efficiency
2. Low-carbon fuels
3. VMT Reductions (including land use)
4. Vehicle/System Operations
5. Construction, Maintenance, and Agency Operations

Examples:

- Higher CAFE standards 380 gm/mile to 250 gm/mile 2016
- CA’s low carbon fuel standard
- Less travel, could be in part due to land use changes
- Signalization, ITS, Eco-driving
- Materials, maintenance practices
Vehicle/Fuel Improvements Will be the **Dominant** Source of GHG Reductions for LDVs

By 2020-2030:

- 50% cut in GHG/mile is feasible from conventional technologies and biofuels
- Compare these GHG rates in U.S. and Europe:
 - 380 grams/mile 2009 in the U.S.
 - **250 grams/mile** 2016 under new Obama standard
 - 256 grams/mile 2007 actual in the E.U.
 - 209 grams/mile 2012 under E.U. regulation
 - 153 grams/mile 2020 under E.U. regulation
- LDV purchase cost will rise, but fuel savings will be greater than vehicle cost increase
- Win-win-win: reduces energy use, reduces GHG, saves money
EPA MY2012-2016 GHG Standards

Projections Based on Public Target

<table>
<thead>
<tr>
<th></th>
<th>Fuel Economy</th>
<th>Greenhouse Gas Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 CAFE standard</td>
<td>27.3 mpg</td>
<td>325 gpm</td>
</tr>
<tr>
<td>2016 target GHG standard</td>
<td>(34-35.5 mpg)</td>
<td>250 gpm</td>
</tr>
<tr>
<td>% GHG reduction</td>
<td>--</td>
<td>23%</td>
</tr>
</tbody>
</table>
A 2007 MIT study predicts MPG gains of 80-85% for model year 2030 vehicles via continuous improvement of conventional technology at a rate of 2-2.5%/year.

Potential for Advanced Technologies to Increase Fuel Economy by 2030

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Low-Carbon Fuels

- Many different low-carbon fuel possibilities:
 - Corn ethanol
 - Sugar cane ethanol
 - Cellulosic biofuel
 - Algae biofuels
 - Diesel
 - Hydrogen
 - Electricity from renewable energy or nuclear power
 - Electricity from utilities with carbon capture & storage

- Carbon intensity measured as GHG/unit of energy – must account for “life-cycle” emissions

- California LCFS:
 - Adopted in 2008
 - Aims to reduce carbon intensity of passenger vehicle fuels by 10% by 2020
 - Measures carbon-intensity on a life-cycle basis – "from field to wheel."
GHG Intensity of Different Fuels

Figure 1. Net Lifecycle Greenhouse Gas Emissions By Lifecycle Component With 100 Year Time Horizon And 2% Discount Rate.
Renewable Fuel Standard

 - Includes 21 billion gallons of advanced biofuels
 - Up from 5 billion in 2006.
- To achieve that goal, EPA mandates % of biofuels to be blended into all gasoline.

Biofuel Usage Mandates under EISA
(billions of gallons)
Source: Bill Malley, Perkins-Cole

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Possible State DOT Roles in Decarbonization

1. **Influence state policies** on low-carbon fuels/vehicles
2. **Use planning scenarios** to emphasize need for decarbonization
3. **Plan/provide plug-in infrastructure** for electric and PHEV vehicles (coordinate with utilities)
4. **Support federal transportation funding** for technology/fuel R&D
5. **Educate** the public and elected officials
6. **Provide incentives** for consumers to use lower carbon fuels/vehicles (lower fees for low-carbon vehicles/fuels)
7. **Support** low-carbon fleet conversion for state vehicle fleets
8. **Adjust** facilities and operations to accommodate decarbonized vehicles and fuels
What Would it Take to Achieve 74% LDV GHG Reduction by 2050?
1% Annual VMT Growth + 100 mpgge LDV Fleet + 10% Operational Efficiency

- Reducing VMT growth (smart growth, transit, carpooling, vanpooling, walking, TDM, and pricing-related strategies) to +1.0% annual.
- System/vehicle operational efficiency (speed limit reductions/enforcement, ecodriving, smoothing out traffic flow, proper tires and inflation, removing bottlenecks, etc.)
- Highest LDV CO2e Emissions Reductions (79% Reduction CO2e/Vehicle Mile) by 2050

U.S. Light Duty Transportation CO2e Emissions

GHG Goal 70% Reduction from 2005
Many Strategies to Reduce LDV VMT

- Economy-wide carbon cap and trade (raises fuel prices)
- Transportation pricing (PAYD insurance, parking pricing, tolls, higher user fees, cordon pricing, congestion pricing, etc.)
- Carpooling and vanpooling (currently carry 7 times as much work trip PMT as transit)
- Bike/ped and transit (but some transit is higher GHG than LDV)
- Trip chaining
- Tele-working, tele-shopping, tele-education, tele-medicine
- Compact land use

In 2008, when fuel prices spiked and VMT dropped, where did it go? We know <2% of the lost VMT went to transit, but don’t know where the rest of the drop went.
Cautionary Note on VMT as Metric

- Does not take into account:
 - Type of fuel
 - Fuel efficiency of vehicle
 - Passenger vs freight trip
 - Number of passengers per vehicle
- As light duty passenger fuel economy increases, cost effectiveness diminishes
 - TCM lessons from 1990s – marginal emission reductions, increasing costs as technology improves
Pricing – A Necessary and Powerful Tool

• Without price signals, reducing driving extremely difficult
• Pricing incentivizes 3 legs of the GHG stool
 • Purchase of lower-carbon vehicles and fuels; and
 • Lower VMT
 • Eco-driving behavior
• Many different pricing tools available: auto “feebates,” carbon/fuel prices, PAYD insurance, mileage fees, parking pricing, congestion pricing, etc.
• Pricing produces revenue to invest in alternatives

“We know we need to get ready for a world in which energy will only be more expensive.” -- Wal-Mart
Consumers Respond to Prices

Gasoline Prices Surged in Summer ‘08, and Consumers Responded, revealing fuel price elasticity

National Vehicle Miles Traveled vs. Gasoline Prices

Monthly total VMT for June of each year.
Carpooling and Vanpooling

- **Important but underappreciated** (7 times as many PMT for work trips nationally are in carpools and vanpools as on transit)
- **Low cost** for government, wide availability, saves users money
- **Effective in all kinds of areas** – rural, small urban areas, suburban, urban
- **Nearer-term payoff** than most transportation strategies
- **Atlanta MPO and WASHCOG pay for commuters to carpool** ($3/day Atlanta, $2/day WASHCOG)
Transit Helps Reduce GHG – but has Small Impact Nationally

- Transit serves many goals and has broad support, but transit serves just 1% of PMT and 0% of freight.

- DOE: *Bus transit has higher GHG/passenger mile traveled than average auto use in the U.S.*

- APTA studies: (a) *Transit reduced GHG by 6.9 MMT in 2005; or (b) by 35 MMT in 2005.* This is 0.3% to 1.7% of U.S. transportation GHG.

- Transit GHG benefits are realized with highly patronized services in high volume corridors -- a market limited to high volume, generally densely developed corridors.
CO₂e Emissions Per Passenger Mile for Various Modes

<table>
<thead>
<tr>
<th>NATIONAL AVERAGE</th>
<th>Energy Intensities</th>
<th>Load Factor</th>
<th>Co₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Btu or kWhr per vehicle mile)</td>
<td>(Btu or kWhr per passenger mile)</td>
<td>Persons Per Vehicle</td>
</tr>
<tr>
<td>Single Occupancy Vehicle (SOV) LDV's</td>
<td>5,987</td>
<td>5,987</td>
<td>1.00</td>
</tr>
<tr>
<td>Personal Trucks at Average Occupancy</td>
<td>6,785</td>
<td>4,329</td>
<td>1.72</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>37,310</td>
<td>4,318</td>
<td>8.80</td>
</tr>
<tr>
<td>Cars at Average Occupancy</td>
<td>5,514</td>
<td>3,496</td>
<td>1.57</td>
</tr>
<tr>
<td>Electric Trolley Bus</td>
<td>5.2</td>
<td>0.39</td>
<td>13.36</td>
</tr>
<tr>
<td>High Occupancy Vehicle (HOV) LDVs at 2+ Occupancy</td>
<td>5,987</td>
<td>2,851</td>
<td>2.10</td>
</tr>
<tr>
<td>Intercity Rail (Amtrak)</td>
<td>54,167</td>
<td>2,760</td>
<td>20.50</td>
</tr>
<tr>
<td>Light and Heavy Rail Transit</td>
<td>62,797</td>
<td>2,750</td>
<td>22.50</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>2,226</td>
<td>2,272</td>
<td>1.20</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>92,739</td>
<td>2,569</td>
<td>31.30</td>
</tr>
<tr>
<td>Vanpool</td>
<td>8,048</td>
<td>1,294</td>
<td>6.10</td>
</tr>
<tr>
<td>Walking or Biking</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Land Use Effect on GHG is Modest – and Depends on Assumptions

• “Growing Cooler” finds compact development can achieve 3.5-5% reduction in transportation GHG, 2007-2050
• GC’s assumptions of land use change are very aggressive:
 – 67% of all development in place in 2050 will be constructed or rehabbed after 2005
 – 60-90% of that development is compact (comparable to 13.3 housing-units per acre)
 – Compact development has 30% less VMT than very sprawling development
• “Moving Cooler” finds smaller GHG effect, even with 90% compact land use for future urban development
2009 TRB Study finds <1% to 11% household GHG reduction by 2050, depending on aggressiveness of assumptions

- Study looks at effects of compact development on travel, energy use, and CO2 emissions
- Disagreement among committee members about feasibility of changes in development patterns and public policies necessary to achieve high-end of estimated reductions

Recommendations
- Policies that support compact, mixed use development should be encouraged
- More carefully designed studies of the effects of land use patterns on VMT, energy use, CO2 emissions are needed to implement compact development more effectively

Less VMT via Land Use: The 8 “D”s

1. Diversity (mix) of land uses
2. Density of urban form – e.g. UGB
3. Design - quality of the (ped/bike) environment
4. Destination accessibility – O/D links
5. Distance to transit
6. Development scale (site, sector, municipality, region)
7. Demographics
8. Demand Management
Example: Tysons Corner VA

Unprecedented transformation
- Suburban to urban
- Doubling jobs
- Adding 10X housing
- New land use plan
- Adding street connectivity with redevelopment
- New implementing authority
Preliminary assessment:

- Greenhouse Gas emissions 16% less per capita
- 2.5 billion lb. annual reduction
- Results from
 - Compact development
 - Fewer auto trips
 - Greater transit use
“Moving Cooler” (MC)

- Evaluated non-technology transportation strategies for (a) GHG reductions and (b) cost-effectiveness in reducing GHG

- Analyzed 46 individual transportation strategies and 6 “bundles” of strategies

- The 46 individual strategies: pricing strategies, transit strategies, land use strategy, operational strategies, freight strategies, nonmotorized strategies, regulatory strategies, bottleneck/capacity strategies, etc.
Individual strategies achieve GHG reductions ranging from <0.5% to 4.0% cumulatively 2010-2050, compared to on-road baseline GHG

- 15,186 mmt - carbon pricing equiv to $2.71/gallon
- 3,361 mmt – VMT fees equiv to $2.53/gallon
- 2,428 mmt – speed limit reductions
- 2,233 mmt – PAYD auto insurance (100%)
- 1,815 mmt – eco-driving by 20% of drivers
- 1,445 mmt – at least 90% of new urban development is compact, with high quality transit
- 1,241 mmt – congestion pricing fully implemented in 120 metro areas at 65 cents/mile
- 575 mmt - $1.2 trillion transit expansion
- 352 mmt – combination of 10 freight strategies
“Maximum” strategy bundle can reduce cumulative on-road GHG by 16% compared to on-road baseline, over 40 years

- Intercity tolls imposed in 2010 at 5 cents/mile
- Congestion pricing at 65 cents/mile in 120 metro areas
- $400 permit fee to park on neighborhood streets
- $1.2 trillion transit expansion
- Bike lanes every 1/4 mile
- New and increased parking fees
- 90% of new urban development is compact, in dense Census tracts, with high quality transit
- Heavier and longer trucks allowed (up to 139,000 lbs)
- Eight more freight strategies
- Eco-driving by 20% of drivers
- Speed limit reductions
- Top 200 bottlenecks improved to LOS D
Potential for 10-20% LDV GHG reduction by:
- Managing speed (35-55 MPH is optimal)
- Speed limits/enforcement (could reduce fuel use 2-4%)
- Eliminating bottlenecks
- “Active” traffic management to smooth traffic flow
- Improving signal timing (could reduce 1.315 MMT CO$_2$/yr)
- Roundabouts (multiple benefits)
- Reducing car and truck idling
- Work zone management to smooth flow
- Encouraging eco-driving
Eco-Driving – 15% GHG Reduction Potential

- EcoDrivers can reduce fuel and CO2 by an average of 15% through smart driving and vehicle maintenance.
- If 50% of drivers practiced EcoDriving, CO2 would drop by 100 million tons annually (the equivalent of heating and powering 8.5 million households)
- Pilot by City of Denver with 300 drivers achieved 10% fuel reduction and similar GHG reduction
- Useful for HDV, MDV, and LDV drivers
- Major push in Europe as GHG strategy
- Aided by dashboard displays of real-time MPG
www.EcoDrivingUSA.com

• EcoDrivingUSA™ -- nationwide effort to increase overall vehicle fuel economy and preserve the environment
• Partnership of Governors, auto industry, environmental groups
• Website:
 – Be an EcoDriver
 – EcoCalculator
 – EcoDriving Quiz
 – Virtual Road Test
 – Is Your Community EcoDriving?
 – Educational Tools
 – News and Events
 – Join the EcoDriving Movement
 – Link this website on your blog or site
• For more information and to join the EcoDriving movement contact: Seena Faqiri at 202.326.5518 or sfaqiri@autoalliance.org.
U.C. Riverside - Traffic Congestion and Its Impact of GHG Emissions: Can ITS Help?

- Studied congestion and impact on CO2, used detailed energy and emissions models linked to real-world conditions
- CO2 emissions can be reduced with three strategies
 - Reduce severe congestion, allow traffic to flow at higher speeds
 - Reduce excessively high free-flow speeds to more moderate conditions
 - Eliminate accel/decel events associated with stop and go traffic in highly congested conditions
- Author: Dr. Matthew Barth, et al., May 2008
- http://www.its.uci.edu/its/whatsnew/barth2.pdf
Effect of Speed on GHG

Traffic Operation Strategies To Reduce CO$_2$

![Graph showing traffic operation strategies and CO$_2$ emissions.](Image)

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Portland, OR Traffic Signal Timing Project

- Began 2002, 10-year project
- Climate Trust funded project and pays for CO2 offsets from project
- Improve signal timing on 17 major arterials
 - Optimize traffic flow
 - Reduce idling, acceleration, CO2 emissions and emissions from criteria pollutants
- Model for traffic signal offset projects

http://www.climatetrust.org/traffic_signals.html
Goods Movement and GDP

For every trillion dollar increase in GDP, we expect an additional 242 billion ton-miles.

Source: Corbett and Winebrake, 2009.

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Truck GHG is Growing Faster than Other Transportation GHG

GHG Emissions by Transportation Mode
(Million Metric Tons CO2 Equivalent)

- **Heavy Trucks**
- **Air**
- **Marine**
- **Rail**
- **Light-Duty Vehicles**

Source: History: Transportation Energy Databook 28th Edition
Projection: Annual Energy Outlook 2009 Updated Reference Case d041400a
Cost of Congestion

Cost of Wasted Time and Wasted Fuel
Due to Highway Congestion
(Billions of 2007 Dollars)

The cost of highway congestion is up 265 percent in inflation-adjusted terms since 1985.

Source: Texas Transportation Institute

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change
Freight GHG Strategies in State Climate Action Plans

- Anti-idling programs
- Truck stop electrification
- Speed limit enforcement
- Freight villages/consolidation centers
- Feeder barge container service
- Traffic flow improvements
- Pre-clearances at scale houses
- Truck driver training
- EPA SmartWay up-grade kits & loans & diesel retrofits

- Incentives to retire older trucks
- Freight logistics improvements
- Shifting freight from truck to rail
- Hybrid power trucks
- Low-viscosity lubricants
- Single wide-base tires
- Automatic tire inflation systems
- PM and “Black carbon” control technologies 85% retrofits

Detailed info available in NCHRP 20-24(59), Appendix C
“Best Practices Guidebook for GHG Reductions in Freight Transportation”

• NC State University report to US DOT, 2007
• Covers trucks, freight rail, marine, air freight, pipeline
• Identifies 33 “best practices” for reducing truck GHG (plus 26 for other freight modes)
• All 33 could reduce truck GHG in 2025 by 12% below 2003 (compared to 67% increase in truck GHG if best practices are not implemented)
Potential State DOT Strategies to Reduce HDV/MDV Truck GHG Emissions

• Speed management, traffic flow improvement, and bottleneck reductions that reduce inefficiencies in truck travel
• Programs to clear traffic incidents quickly and reduce construction zone congestion that tie up trucks
• Incentives for truck owners to retrofit or upgrade trucks to reduce GHG emissions. PM reductions also reduce black carbon.
• Support for efficient intermodal freight facilities and efficient access to seaports, rail, and marine facilities
Potential State DOT Strategies to Reduce HDV/MDV Truck GHG Emissions (continued)

- Truck stop electrification (to reduce engine idling)
- Other programs and policies to reduce truck idling
- Truck driver training/educational programs for low-GHG driving practices
- Support for R&D and regulations to develop and deploy technology and fuel improvements that reduce freight GHG
- Obama administration announced fuel economy requirements under development for MDV/HDV in 2011
Diesel Retrofits Reduce PM and Black Carbon

- Black carbon is emitted from burning fossil fuels
- EPA conducting study on impact on GHG – due early 2011
- Diesel emissions considerable, smoke and soot
- A “forcing” agent in heating up climate, blocking sunlight
- Today’s particulate filters for on road and off road engines reduce PM up to 99%, including reductions in black carbon
Diesel Retrofits Reduce PM and Black Carbon

- On-road diesel truck retrofits reduce PM 99% = 2007 EPA standards and also reduce black carbon
- Locomotive retrofits reduce PM and black carbon
 - Achieve over 76% PM and 25% fuel efficiency
- Cost-effective way to reduce emissions and save energy immediately.
- Retrofits of construction equipment and locomotives could be promising as state DOTs work to reduce emissions to meet potential planning requirements
Construction, Maintenance, & Agency Operations Strategies

- Significant sources of GHG and energy use
- Many opportunities to reduce GHG and energy cost from current system:
 - LED traffic lights
 - Low carbon pavement
 - Energy-efficient buildings
 - Reduced roadside mowing
 - Solar panels on ROW
 - Alt fuels and hybrid vehicles in DOT fleets
 - Alt fuel buses
Solar Panels for Highway Lighting

- 594 solar panels produce 122,000 KWH/year to light interchange
- Avoids nearly 43 metric tons of GHG/year from normal electricity
- $1.28 M project in operation for over a year
- PPP of OR DOT, PGE, and US Bank, using state and federal tax credits
- Could be a model for other DOTs
- ORDOT planning 2 additional projects
- www.oregonsolarhighway.com
McKinsey: Available Technologies can Reduce 3 Billion Tons GHG/Year at < $50/ton
(compare to projected 9.7 billion tons economy-wide in 2030)

The analysis found that abatement options are highly fragmented and widely spread across the economy. Almost 40 percent of abatement could be achieved at “negative” marginal costs, i.e., the savings over the lifecycle of these options would more than pay for the incremental investment, operating, and maintenance costs. Realizing the potential of many negative-cost options would require overcoming persistent barriers to market efficiency.
European View of Transport GHG Strategies
(European Council of Ministers of Transport, 2006)

• “The most effective measures available include fuel taxes, vehicle and component standards, differentiated vehicle taxation, support for eco-driving and incentives for more efficient logistic organization, including point of use pricing for roads. “

• “More integrated transport and spatial planning policies might contain demand for motorized transport.”

• Mode shifts … cannot … form the corner-stone of effective CO2 abatement policy and the prominence given to modal shift policies is at odds with indications that most modal shift policies achieve much lower abatement levels than measures focusing on fuel efficiency.”

• “Ultimately higher cost energy sources …. will be required if there are to be further cuts in transport sector CO2 emissions.”
Many strategies are needed to reduce transport GHG. No silver bullet. Will need full mix of strategies including:

- Maximize energy efficiency of current vehicle technology
- Decarbonize vehicles and fuels world-wide
- Adopt pricing measures to reward conservation and tech innovation
- Push “eco driving” and system/speed management
- Adopt more efficient land use
- Support carpools & vanpools, biking, walking, transit use, trip chaining, telecommuting
- Adopt low carbon, energy-conserving strategies in construction, maintenance, and agency operations
- Implement wide-ranging freight technology and logistics improvements
VII. Participant Workshop
A working session in break-out groups to identify an initial set of activities for Hawai’i DOT to pursue:

(a) GHG reduction strategies and framework;
(b) Climate adaptation planning;
(c) Public communication strategies;
(d) Outreach/collaboration with other agencies and organizations.
Resources -- Websites

- AASHTO: http://climatechange.transportation.org/
- Intergovernmental Panel on Climate Change (IPCC): http://www.ipcc.ch/
- The Pew Center on Global Climate Change: http://www.pewclimate.org/
- EPA Climate Change Program http://www.epa.gov/climatechange/
• AASHTO, “Primer on Transportation and Climate Change,” 2008
• NCHRP 20-24 (59), “Strategies for Reducing the Impacts of Surface Transportation on Global Climate Change,” 2009
• U.S. DOE, “Annual Energy Outlook,” 2009 (primary source of official U.S. data on energy and GHG)
• Pew Center on Climate Change, “Climate Change 101”
AASHTO Climate Change Steering Committee: CCSC acts as a focal point and coordinating body for AASHTO’s activities related to climate change. CCSC members act as the focal point for AASHTO on climate change policy issues and provide oversight and guidance to AASHTO’s Climate Change Technical Assistance Program.

AASHTO Technical Assistance Program on Climate Change: This is a new, voluntary program that provides timely information, tools and technical assistance to assist AASHTO members in meeting the difficult challenges that arise related to climate change.

For more information on AASHTO’s Climate Change Steering Committee and Climate Change Technical Assistance Program, please contact: Caroline Paulsen at AASHTO (202) 624- cpaulsen@aashto.org
Contact Info for Workshop Instructors

Cynthia J. Burbank
Parsons Brinckerhoff
burbank@pbworld.com
202-661-9262

Sarah J. Siwek
Sarah J. Siwek & Associates
ssiwek@aol.com
310-417-6660 x224