Climate Change: Impacts, Challenges and Strategies

IOWA DOT

June 22, 2010
Workshop Purpose

- What is climate change?
- How will it affect state DOTs?
- Status of federal legislation?
- What are Climate Adaptation issues?
- What are proposed CEQ-NEPA requirements?
- How can state DOTs reduce transportation GHG?
Workshop Overview

I. Climate Change Science, Sources, and Trends
II. The Importance of Climate Change to State DOTs
III. Federal Legislation
IV. Climate Adaptation
V. Planning and NEPA Issues
VI. Strategies to Reduce GHG Emissions from Transportation Sources
VII. Participant Workshop
VIII. Wrap-up and Next Steps Discussion
I. Climate Change Science, Sources and Trends
What is climate change?

The United Nations Framework Convention on Climate Change (UNFCCC) defines Climate Change as:

“A change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.”
What is the Greenhouse Effect?

1. Solar energy passes through the atmosphere

2. Some energy is reflected back out to space

3. Earth’s surface is heated by the sun and radiates the heat back out towards space.

4. GHG in the atmosphere trap some of the heat
What are the temperature trends?

![Global Temperatures Graph](image)

- **Global Temperatures**
 - Annual Average
 - Five Year Average

Temperature Anomaly (°C)

Data from 1860 to 2000
What are the Impacts of Climate Change?

<table>
<thead>
<tr>
<th>Projected impacts of climate change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global temperature change (relative to pre-industrial)</td>
</tr>
<tr>
<td>0°C</td>
</tr>
<tr>
<td>Food</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ecosystems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Extreme Weather Events</td>
</tr>
<tr>
<td>Risk of Abrupt and Major Irreversible Changes</td>
</tr>
</tbody>
</table>
What are the scientific findings?

Climate Change 2007: The Physical Science Basis
- Developed by the Intergovernmental Panel on Climate Change (IPCC)
- Contributions from 2,000 scientists assessing the Earth’s environment and the effects of global warming
- …a summary for policy makers…
 There is 90% certainty that humans are the cause of global warming.

Notable findings in the report:
- Atmospheric CO₂ levels are at their highest levels in 650,000 years.
- Avg global temperatures have risen ~1.3°F since the industrial age began.
- Sea level rose ~4.8 – 8.8“ worldwide during the 20th century, at a rate more than double that of the past decade
Arctic sea ice is retreating – a measurable change in climate that can be seen.

Source: NASA
The evidence is clear

• “Warming of the climate system is unequivocal…”
 -- Intergovernmental Panel on Climate Change

• “An overwhelming body of scientific evidence paints a clear picture: climate change is happening, it is caused in large part by human activity, and it will have many serious and potentially damaging effects in the decades ahead.”
 -- Pew Center on Climate Change
What is the evidence of climate change?

- 14% increase in human GHG since 1990 – USA
- 26% increase in human GHG since 1990 – world
- GHG levels are at highest in 1000s of years
- 2000-2009 was the warmest decade on record worldwide
- Heat stored in oceans has increased substantially
- Sea surface temperatures have been higher during the past three decades than at any other time since large-scale measurement began in the late 1800s.
- In recent years, a higher percentage of precipitation in the United States has come in the form of intense single-day events.
- 8 of top 10 years for extreme one-day precipitation events occurred since 1990.
- The occurrence of abnormally high annual precipitation totals has increased.
- Intensity of tropical storms in the Atlantic, Caribbean, and Gulf has risen noticeably over the past 20 years.
- 6 of the 10 most active hurricane seasons have occurred since the mid-1990s.

Source: EPA, Climate Change Indicators in the U.S., May 2010
What is the Evidence of Climate Change (cont’d)

- Sea level worldwide has increased at a rate of roughly 0.6” per decade since 1870.
- Sea level increase has accelerated to more than 1”/year in recent years.
- Oceans have become more acidic over the past 20 years, and studies suggest that the ocean is substantially more acidic now than it was a few centuries ago. Rising acidity is associated with increased levels of carbon dioxide dissolved in the water, and affects sensitive organisms such as corals.
- Sept 2007 had least Arctic sea ice of any year on record, followed by 2008 and 2009.
- Arctic sea ice in 2009 was 24 percent below the 1979-2000 historical average.
- Glaciers in U.S. and around the world have generally shrunk since the 1960s and the rate at which glaciers are melting appears to have accelerated over the last decade.
- Glaciers worldwide have lost more than 2,000 cubic miles of water since 1960.
- Average length of the growing season in the lower 48 states has increased by about two weeks the since beginning of the 20th century.
- North American bird species have shifted their wintering grounds northward by an average of 35 miles since 1966, with a few species shifting by several hundred miles.

Source: EPA, Climate Change Indicators in the U.S., May 2010
How widespread are climate change concerns?

- Over 2000 leading scientists worldwide contributed to IPCC report
- 33 U.S. states have developed climate change action plans
- U.S. Climate Action Partnership includes 23 major corporations and 5 nongovernmental groups which have called for U.S. Congress to enact strong GHG targets to achieve significant reductions in GHG:

Where do all those GHG come from?

Comparison: Annual* & Cumulative** CO₂ Emissions

** Cumulative Emissions from 1850-2000, CAIT WRI
What GHG targets have been set?

- Scientists recommend **60-80% GHG reduction below 1990 level by 2050**
- Many states and countries have adopted targets in this range
- President Obama’s budget: **80%** GHG reduction below 2005 by 2050
- Waxman-Markey bill: **17%** below 2005 by 2020 and **83%** below 2005 by 2050
- Kerry-Lieberman bill: **17%** below 2005 by 2020 and **83%** below 2005 by 2050
What is transportation’s share of U.S. GHG?

Source: U.S. DOT Report to Congress, 2010

- Electric Power Industry, 34%
- Industry, 19%
- Agriculture, 8%
- Residential, 5%
- Commercial, 6%
- Transport, 29%

- Light Duty Vehicles, 58%
- Aircraft, 12%
- Freight Trucks, 19%
- Buses, 0.6%
- Motorcycles, 0.1%
- Pipelines, 1%
- Rail, 3%
- Marine, 5%
- Lubricants, 1%
Iowa Gross GHG emissions by Sector compared to U.S.

Figure ES-2. Gross GHG emissions by sector, 2005: Iowa and U.S.

Iowa
- Transport: 17%
- Res/Com Fuel Use: 7%
- Industrial Fuel Use: 13%
- Fossil Fuel Inc.: 2%
- Electricity: 31%
- Agriculture: 23%
- Industrial Process: 4%
- Waste: 2%

US
- Transport: 27%
- Res/Com Fuel Use: 8%
- Industrial Fuel Use: 14%
- Fossil Fuel Industry: 3%
- Electricity: 34%
- Agriculture: 7%
- Industrial Process: 4%
- Waste: 3%

ES-5
What are U.S. transportation GHG trends?
- *U.S.DOT Report to Congress, 2010*

<table>
<thead>
<tr>
<th>Category</th>
<th>Change, 1990-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>All U.S. GHG Sources</td>
<td>15%</td>
</tr>
<tr>
<td>U.S. Transportation</td>
<td>27%</td>
</tr>
<tr>
<td>Light Duty Vehicles</td>
<td>24%</td>
</tr>
<tr>
<td>Freight Trucks</td>
<td>77%</td>
</tr>
<tr>
<td>Commercial Aircraft</td>
<td>4%</td>
</tr>
</tbody>
</table>
How much will transportation GHG increase?

- **U.S.**: GHG from all transportation modes are projected to remain almost constant through 2030 – but light duty vehicle GHGs will actually decline slightly and freight GHG will increase significantly.
- **World**: GHG emissions from transportation are expected to rise sharply; soon GHG emissions from transportation in the developing world will greatly exceed those of the U.S.
What are the global trends in vehicle ownership and use?

- Today, car ownership in the U.S. is greater than in India, China, and Brazil combined.
- By 2050, car ownership in those countries will be 5 times greater than in the U.S.

Why is vehicle “decarbonization” necessary?

“In the long term, carbon free road transport fuel is the only way to achieve an 80-90% reduction in emissions, essentially “decarbonization.”

--The King Review for the U.K. Government, by Professor Julia King, Vice-Chancellor of Aston University and former Director of Advanced Engineering at Rolls-Royce plc, March 2008

“[I]n the period beyond 2100, total GHG emissions will have to be just 20% of current levels. It is impossible to imagine this without decarbonization of the transport sector.”

Summary

- Climate change is real
- 60-80% GHG reduction is needed
- It is a global and cumulative problem
- In developing countries, GHG emissions will increase substantially
- Delay will magnify the difficulty of reducing GHG
II. The Importance of Climate Change to State DOTs
• Moving away from our dependence on oil and reducing GHG emissions will be the greatest challenge to decision-making for transportation policies, programs, and investments in the coming decades.

• Other sectors are moving on climate change policies faster than transportation

• States are adopting sweeping policies with little or no input from transportation agencies or experts
“We know we need to get ready for a world in which energy will only be more expensive.”

Wal-Mart will cut 20 MMT of GHG from its supply chain by the end of 2015 — equivalent to removing >3.8 million cars from the road for a year.

Wal-Mart is already requiring suppliers to cut packaging, selling “Walmart-label” CFL bulbs in Mexico, and labeling clothes as cold-water wash.

Should state DOTs take a page from Wal-Mart’s book?
DOE expects slight decline in LDV GHG emissions nationally

GHG Emissions from Light-Duty Vehicles
(USDOE, Annual Energy Outlook 2009)
U.S. VMT growth rates are declining

- VMT growth has been steadily declining since the 1950s
- VMT growth slowed to about 1.5% in early 2000s
- VMT growth was actually negative in 2008, pattern of upward growth in 2009
- VMT is affected by population, economy, transportation prices, demographics, land use
- AASHTO supports reducing VMT growth rate to 1% per year

Source: Alan Pisarski and Cambridge Systematics
VMT closely linked to disposable income
DOE expects VMT and MPG both to rise
As VMT and MPG rise, GHG is nearly flat
What should the GHG reduction target be for the transportation sector?

- **Economists:**
 - Reduce GHG emissions as cost-effectively as possible, even if that means much larger reductions in some sectors than others
 - Evidence is accumulating that reducing transportation GHG 80% would be more costly than same % reduction in other sectors
 - Ergo: Transportation GHG reduction targets probably should be lower

- **Political reality:**
 - Transportation will be expected to contribute its "fair share"
 - Room for debate about what "fair share" means.
 - Often-cited goal is **60 to 80%** from current levels.
Policy debate can be intense

- **Climate skeptics**: Climate change isn’t happening, or isn’t human-induced
- **Environmental view**: Transform land use, increase transit, and reduce VMT
- **Techno-optimist view**: Transform vehicle/fuel technology and improve highway/driver operations
- **Pragmatic view**: Combination -- mostly vehicles/fuels, some operational efficiency, plus modest role for land use, transit, and VMT moderation
State Climate Action Plans

Source: Pew Center on Climate Change
State Climate Action Plans

- Highly “aspirational”
- Managed by state environmental agencies
- Steering Committees included multiple environmental advocates and rarely had transportation agency reps
- State DOT involvement was at a technical advisory level, whose input was often rebuffed
- Example: VT strategies would reduce 2030 VMT from 10.5 B (base case) to 3.9 B
State Climate Plan Goals

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>% Reduction in Transportation GHG</th>
<th>% of all GHG Reductions from Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iowa</td>
<td>2020</td>
<td>40% est.</td>
<td>10% est.</td>
</tr>
<tr>
<td>New York</td>
<td>2020</td>
<td>18%</td>
<td>7%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>2020</td>
<td>N/A</td>
<td>7%</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>2025</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>Maine</td>
<td>2020</td>
<td>23%</td>
<td>27%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2025</td>
<td>27%</td>
<td>5%</td>
</tr>
<tr>
<td>Oregon</td>
<td>2025</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2020</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>Colorado</td>
<td>2020</td>
<td>22%</td>
<td>6%</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2020</td>
<td>31%</td>
<td>11%</td>
</tr>
</tbody>
</table>
State Climate Plans – Transportation Elements Vary All Across the Map

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>Vehicle</th>
<th>Low Carbon Fuels</th>
<th>Smart Growth and Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>2020</td>
<td>40%</td>
<td>40%</td>
<td>3%</td>
<td>17%</td>
</tr>
<tr>
<td>NC</td>
<td>2020</td>
<td>35%</td>
<td>12%</td>
<td>38%</td>
<td>15%</td>
</tr>
<tr>
<td>SC</td>
<td>2020</td>
<td>14%</td>
<td>55%</td>
<td>29%</td>
<td>1%</td>
</tr>
<tr>
<td>CT</td>
<td>2020</td>
<td>51%</td>
<td>38%</td>
<td>8%</td>
<td>2%</td>
</tr>
<tr>
<td>ME</td>
<td>2020</td>
<td>53%</td>
<td>25%</td>
<td>21%</td>
<td>1%</td>
</tr>
<tr>
<td>MD</td>
<td>2025</td>
<td>24%</td>
<td>12%</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>NY</td>
<td>2020</td>
<td>59%</td>
<td>11%</td>
<td>27%</td>
<td>4%</td>
</tr>
<tr>
<td>PA</td>
<td>2025</td>
<td>45%</td>
<td>36%</td>
<td>18%</td>
<td>0%</td>
</tr>
<tr>
<td>MN</td>
<td>2025</td>
<td>15%</td>
<td>35%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>VT</td>
<td>2028</td>
<td>21%</td>
<td>14%</td>
<td>49%</td>
<td>17%</td>
</tr>
</tbody>
</table>
Iowa Climate Change Advisory Council (ICCAC)

- Created by legislature 2007/2008
- 23 members appointed by Governor
- 4 non-voting ex-officio members from General Assembly
- Charge: Submit greenhouse gas emission reduction proposals to Governor and General Assembly by Jan 1, 2009
- Develop short-term (2012), medium-term (2020) and long-term scenarios and effectiveness
- **Goal: 50% reduction by 2050 and 90% by 2050**
- Establish 2005 as baseline year
Five subcommittees considered strategies and policy options

- Energy Efficiency and Conservation (EEC)
- Clean and Renewable Energy (CRE)
- Transportation and Land Use (TLU)
- Agriculture, Forestry, and Waste Management (AFW)
- Cross-Cutting Issues (CC)
Table ES-2. Summary by sector of estimated impacts of implementing all of the ICCAC options (cumulative reductions and costs/savings)

<table>
<thead>
<tr>
<th>Sector</th>
<th>GHG Reductions (MMtCO₂e)</th>
<th>Net Present Value 2009–2020 (Million $)</th>
<th>Cost-Effectiveness ($/tCO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2020</td>
<td>Total 2009–2020</td>
</tr>
<tr>
<td>Energy Efficiency and Conservation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean and Renewable Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation and Land Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture, Forestry, and Waste Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-Cutting Issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (includes all adjustments for overlaps)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GHG = greenhouse gas; MMtCO₂e = million metric tons of carbon dioxide equivalent; $/tCO₂e = dollars per metric ton of carbon dioxide equivalent.

The values in this table do not include the effects of recent actions. Negative values in the Net Present Value and the Cost-Effectiveness columns represent net cost savings associated with the policy options.

Within each sector, values have been adjusted to eliminate double counting for policies or elements of policies that overlap. In addition, values associated with policies or elements of policies within a sector that overlap with policies or elements of policies in another sector have been adjusted to eliminate double counting. Appendix F (for the EEC sectors), Appendix G (for the CRE sectors), Appendix H (for the TLU sectors) and Appendix I (for the AFW sectors) of this report provide documentation of how sector-level emission reductions and costs (or cost savings) were adjusted to eliminate double counting associated with overlaps between policies.
What are Other State DOTs Doing on Climate Change?

- New York: http://www.nysdot.gov/nasto/repository/WS4d_Zamurs%20_AASHTO_0.ppt
- Florida: http://www.dep.state.fl.us/climatechange/files/action_plan/chap5_trans.pdf
GHG reduction debates overshadow 2 more challenges bearing down on state DOTs

- **New revenue sources**: New revenue sources are needed that are appropriate in a climate change-dominated world, with electric vehicles and new fuels.

- **Climate adaptation**: Huge funding increases, risk-based planning and programming, and tough policy decisions will be needed to adapt to a changing climate.
III. Federal Climate Change Legislation
Federal Climate Legislation and Policy are Taking Shape

- AASHTO position
- EPA proposed “endangerment” finding
 - (section 202(a) of CAA
- “Cap and Trade” bills
- 2010 Senate Bill - Kerry-Lieberman
AASHTO Position on Climate Change

- Major R&D to decarbonize vehicles/fuels (comparable to “man on the moon”)
- Reduce VMT growth to 1%/year
- Double transit ridership
- Increase intercity passenger rail
- $100 M/year Federal funding for coordinated land use/transportation planning
- Oppose GHG conformity requirement
- See AASHTO “Real Transportation Solutions” at http://www.climatechange.transportation.org/
Clean Air Act – EPA Endangerment Finding

- EPA can regulate GHG under existing Clean Air Act (CAA)
- December 2009 EPA finding:
 - Atmospheric concentrations of GHG “endanger” public health and welfare (per CAA section 202(a))
 - Emissions of GHG from new motor vehicles “contribute to” air pollution which is endangering public health and welfare
- Based on this finding EPA is obligated to regulate GHG (e.g., GHG standards for autos)
- GHG conformity possible, but not likely
- Endangerment finding challenged by several states
Federal Climate Legislation - Status

- **House**: Passed Waxman-Markey bill on the floor in 2009
- **Senate**: Boxer-Kerry bill reached floor in 2009, then stalled
- **Senate**: Kerry-Lieberman “discussion draft” bill released May 12, 2010
- **President Obama**: Strongly supports cap-and-trade legislation
Federal Legislation –
Major Elements of Climate Bills

- **Cap-and-Trade**
 - Sets “cap” on GHG emissions; cap declines over time
- **Energy Production**
 - Provides incentives and other support for production of renewable energy (and maybe nuclear, oil & gas)
- **Energy Efficiency**
 - Provides incentives and tighter regulations to promote greater efficiency – buildings, appliances, vehicles, etc.
- **Transition Assistance**
 - Provides assistance to ease impact of higher energy prices on consumers and U.S. industries

Source: Bill Malley, Perkins Coie
Federal Climate Legislation – Basics of Cap and Trade

How a cap-and-trade program works:

– Set a cap on total GHG emissions, and reduce it over time
 • 17 to 20% reduction by 2020
 • 83% reduction by 2050
– Issue "allowances" to emit GHGs within the cap
 • Some allowances are auctioned; others distributed free
– “Allowances” are an economic asset that can be traded
 • Receiving a free allowance is like receiving dollars
– “Offsets” can be purchased in lieu of allowances
 • An offset is obtained by paying for a reduction made by sources outside the cap, including sources in other countries
 • Example: pay to avoid deforestation in a developing country

Source: Bill Malley, Perkins Coie
2010 Senate Bill: Kerry-Lieberman –
American Power Act

- “Discussion draft” released May 12, 2010
- Calls for reductions from 2005 baseline
 - 17% by 2020
 - 42% by 2030
 - 83% by 2050
- Sets national GHG emissions cap
 - Transportation fuels under the cap
 - Tptn fuel producers and importers would purchase emissions allowances at a fixed price ($12 - $25/ton carbon)
 - Tptn carbon price would increase at 3% over inflation/year
- Imposes transportation planning requirements on states & large MPOs
- Many, many other provisions, affecting all sectors
How much revenue would K-L provide for transportation?

- K-L doesn’t allocate dollars to transportation – but does allocate “percentages of allowances” which can be sold and converted into dollars
- Value of allowances will fluctuate but can be estimated
- K-L caps the value of allowances for transportation at $6.2 billion per year (without the cap, the value could be higher)
- AASHTO/APTA estimate that 70-90% of revenues from transportation fuels are diverted to other purposes (deficit reduction, transition assistance to households, R&D, etc.)
How could the K-L allowances revenue be used for transportation?

$6.25 billion annually -- maximum

- One-third to Highway Trust Fund up to $2.5 b/yr
- One-third to TIGER grant program $1.875 b/yr
- One third for transportation planning and implementation $1.875 b/yr
How could the K-L allowances revenue be used for transportation?

States and large MPOs (over 200,000 population) must:
- Develop GHG targets and strategies
- Integrate GHG targets and strategies into plans
- Demonstrate progress in stabilizing and reducing GHG emissions to contribute to achievement of national targets

USEPA is to:
- Issue regulations for standardized emissions models and methods

USDOT is to:
- Determine whether state and MPO plans are “likely to achieve” GHG reduction targets
- Provide performance awards ($) for states with approved plans
- Issue regulations for GHG planning (overlaps with EPA regs)
Federal Climate Legislation – Impact on Transportation Fuel Prices

• How would the House and Senate bills affect the price of transportation fuels?
 – EPA makes two key assumptions:
 • Relatively low cost to adopt new technologies that reduce GHG emissions, such as carbon capture and sequestration (CCS)
 • Relatively widespread use of "offsets"
 – Without these assumptions, prices could be much higher.
 – EPA has not yet released an estimate of the gasoline price impacts of the 2010 Senate bill

Source: Bill Malley, Perkins-Coie
Federal Climate Legislation – Impact on Transportation Fuel Prices

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA Projection</td>
<td>$0.14</td>
<td>$0.24</td>
<td>$0.69</td>
</tr>
<tr>
<td>CRA: Base Case</td>
<td>$0.19</td>
<td>$0.38</td>
<td>$0.95</td>
</tr>
<tr>
<td>CRA: "Low-Cost"</td>
<td>$0.17</td>
<td>$0.34</td>
<td>$0.84</td>
</tr>
<tr>
<td>CRA: "High-Cost"</td>
<td>$0.36</td>
<td>$0.71</td>
<td>$1.82</td>
</tr>
<tr>
<td>CRA: "No International Offsets"</td>
<td>$0.52</td>
<td>$1.08</td>
<td>$2.79</td>
</tr>
</tbody>
</table>

House and Senate Bills Have Small Impact on Transportation GHG

EPA projects that the price signal from cap-and-trade would have little effect on transportation emissions

"The increase in gasoline prices that results from the increase in the carbon price ... is not sufficient to substantially change consumer behavior in their vehicle miles traveled or vehicle purchases"

"The relatively modest indirect price signal on vehicle manufacturers from this particular cap-and-trade policy creates little incentive for the introduction of low-GHG automotive technology."

Source: http://www.epa.gov/climatechange/economics/economicanalyses.html
Summary

• Prepare for federal legislation and requirements
• DOTs may be expected to reduce transportation GHG by 60-80% by 2050
• Many state climate action plans include “aspirational” transportation elements that have not been thoroughly analyzed or vetted
• VMT reductions may be expected or required
• Lower VMT and more fuel efficient cars will exacerbate the transportation revenue dilemma – new revenue sources will be needed
IV. Climate Adaptation for Transportation
Why Transportation Agencies Should Plan for Adaptation

- Sea level rise & storm surges
 - Destruction of bridges
 - Erosion & permanent inundation of roads
 - Disruption of evacuation routes & road network
 - Bridge clearance limitations
- Other types of impacts
 - Increased flooding
 - Pavement and rail buckling
 - Increased flooding
 - More severe inland storms
 - Increased maintenance

Source: http://mceer.buffalo.edu/research/Reconnaissance/Katrina8-28-05/05BiloxiBay1/09lg.jpg
“Actions by individuals or systems to avoid, withstand, or take advantage of current and projected climate changes and impacts. Adaptation decreases a system’s vulnerability, or increases its resilience to impacts.”

--Pew Center on Climate Change
Potential Impact of Climate Change on U.S. Transportation (TRB Special Report 290)
• Climate change will affect every mode of transportation and every region in the United States, and the challenges to infrastructure providers will be new and often unfamiliar.

• State and local governments and private infrastructure providers will need to incorporate adjustments for climate change into long-term capital improvement plans, facility designs, maintenance practices, operations, and emergency response plans.
• **Design standards** will need to be re-evaluated and new standards developed as progress is made in understanding future climate conditions and the options for addressing them.

• **Transportation planners** will need to consider climate change and its effects on infrastructure investments. Planning timeframes may need to extend beyond the next 20 or 30 years.

• **Institutional arrangements for transportation planning and operations** will need to be changed to incorporate cross jurisdictional and regional cooperation.
States Focusing on Climate Adaptation

- Coastal states are most concerned
- Multi-sector reviews of vulnerability
- Often led by resource agencies
- State DOT role -- significant to minor
- Still early on the learning curve

- California
- Pennsylvania
- Maryland
- Washington
- Hawaii
- Alaska
- Florida
- Massachusetts
- North Carolina
States Focusing on Climate Adaptation

- Changes in bridge height
- Changes in bridge foundation and superstructure
- Changes in materials specifications
- Changes in suspended and cable-stay bridges to withstand more severe wind and turbulence
- Changes in culvert design, capacity, and location
- Changes in slope design
- Changes in pavement drainage systems
Implications for Maintenance/Operations

- Pavement rutting and rail buckling
- Longer construction season
- Closures and detours due to rock slides, soil erosion, flooding
- Speed reductions
- Flooding of culverts
- Change in weight restrictions
- More grass cutting/less snow plowing
- Work crew limitations during severe heat periods
Implications for Environmental Reviews

- In NEPA process, sponsor must consider project vulnerability to future climate change
- US ACE may raise new issues in wetland permitting due to climate impacts
- USCG may raise climate impacts in bridge permitting
- DOI may raise issues & require more analysis for ESA, due to uncertainty of climate impacts on species
9 regions (6 continental US, Alaska, Hawaii, Caribbean)

Projected changes by region:
- Annual, Seasonal Temperature (change in °F)
- Seasonal Precipitation (% change)
- Where information exists:
 - Sea level rise
 - Storm activity

Regional focus, also includes information at the international, national and State and local levels (as available)
FHWA Climate Change Effects Report

Three sections
- Report
- Regional maps (Appendix B)
- Climate Effects Typology (Appendix C)
FHWA Climate Change Effects Report

- Provides information on climate change projections for transportation decision makers
- Summarizes current science
 - Science is progressing, expect information to improve over next 3-5 years
- Short, medium and long term
- Based on low and high GHG emission scenarios
- Assistance from Climate experts -- NOAA, USGS, DOE
U.K. Highways Agency
Adaptation Strategy Model

- Model identified potential impacts of climate change of the UK road network
- Resulted in a climate change adaptation strategy
- Strategy addresses design, construction, and maintenance
- Includes a risk appraisal for all operations
Summary

- **All modes** of transportation threatened
- **Affects all transportation functions** – planning, programming, environment, location, design, construction, operations, emergency planning – and budgeting
- **Low lying coastal areas especially vulnerable**
- **Risk assessment and prioritization** is key
- Transportation planners need to be aware of and adapt to climate change impacts on our transportation infrastructure
- Looming in future: where **not to build or re-invest**?
V. Planning and NEPA Issues
TARGETS AND STRATEGIES: States and TMA MPOs must develop GHG reduction targets and strategies, as part of transportation plans

PROGRESS: States and TMA MPOs must “demonstrate progress in stabilizing and reducing” GHG emissions

METHODOLOGIES: EPA must issue regulations on transportation GHG goals, standardized models, methodologies, and data collection

CERTIFICATION: US DOT shall not certify state or MPO plans that fail to “develop, submit or publish emission reduction targets and strategies”

PERFORMANCE REQUIREMENTS: US DOT must establish requirements, including performance measures, “to ensure that transportation plans... sufficiently meet the requirements..., including achieving progress towards national transportation-related GHG emissions reduction goals.”
Transportation Planning –
Many GHG Issues and Implications

- GHG planning will be impacted by both state and federal policies
- Both state DOTs and MPOs will be affected
- Inventories of transportation GHG will probably be required
- GHG reduction targets will probably be required
- Methodologies to predict GHG for different plans and strategies will be needed
- Many Clean Air Act planning issues will carry over into GHG planning – modeling limitations, induced demand, VMT reduction expectations, uncertainties about travel behavior, land use expectations, etc.
- A major new issue – high degree of uncertainty about future potential new technology and fuels to reduce GHG
- Another key issue -- whether/how to include “upstream” and “life cycle” GHG of transportation
NEPA: Draft CEQ Guidance

• Draft issued by CEQ on February 18, 2010
• Comments were due: May 24, 2010
• Proposal:
 – Evaluate proposed actions that are reasonably expected to cause direct emissions of 25,000 metric tons or more of CO2-equivalent on an annual basis, and,
 – Consider impact of climate change on the project
• AASHTO provided extensive comments
CEQ Proposal: GHG Emissions to be Considered on a Project Level

- Cumulative emissions over the life of the project
- Emissions from vehicles using the highway
- Construction-related emissions
- Up-stream emissions from fueling cycle (drilling, refining, shipping, etc.) and vehicle cycle
- Others?
- Life-cycle emissions?
- Emissions effects of land use changes, roadway maintenance and lighting, etc.
CEQ Proposal: Roadway GHG Emissions

25,000 metric tons = 43,000,000 VMT/year or about 120,000 VMT/day

- Action that would increase VMT by \textit{120,000/day (NEW VMT) would trigger analysis}, with all else being equal (e.g. speeds, congestion, fleet mix, etc.)
NEPA: Projects Potentially Triggering GHG Analysis under CEQ Proposal

- New 6-lane bridge,
 - 1.2 miles long, 100,000 ADT, 70 mph (in 2020, 114,400 ADT)
- New 4-lane highway,
 - 3.5 miles long, 40,000 ADT, 70 mph (2020, 45,800 ADT)
- New 2-lane highway,
 - 6 miles long, 25,000 ADT, 60 mph (2020 ADT 28,600)
- Widening existing highway –
 - 6 to 10 lanes, 13 miles, speeds increase from 60 to 70 mph (2020 volumes could increase by 14%)
- Transit Projects - Light-Rail, Heavy-rail, Inter-city Rail?
NEPA: Future Roadway GHG Emissions

• 25,000 tons is based on *annual emissions over life of the project*
• *Future fuel economy* projected by US DOE
 – 2020 fleet - ~14% more fuel efficient than 2010 fleet; raises VMT threshold to 137,000 VMT/day
• *Upstream and downstream emissions?*
 – Fuel supply (well to pump) and vehicle manufacture and disposal included in EPA national inventories
 – Proposed approach would add 40% to emissions generated to account for upstream and downstream emissions
 • 120,000 VMT becomes 86,000 VMT **IF** 40% and upstream/downstream emissions included
NEPA: Construction GHG Emissions

- Methodologies to quantify construction emissions are old
- But, based upon NY procedures
 - 25,000 metric tons could result from 30-50 lane-miles of new road work
 - Emissions vary widely
- *Construction emissions would be annualized over life of project*
NEPA: Construction GHG Emissions

Source: NYSDOT

Construction Energy Factors -- Lane-Mile Approach

<table>
<thead>
<tr>
<th>Type of Improvement</th>
<th>Construction Energy Consumed per Rural(^a)-Lane-Mile (10(^9) Btu/mi)</th>
<th>CO2, tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>New construction</td>
<td>12.70</td>
<td>637</td>
</tr>
<tr>
<td>Relocation</td>
<td>10.50</td>
<td>526</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>5.20</td>
<td>261</td>
</tr>
<tr>
<td>Restoration and rehabilitation</td>
<td>2.30</td>
<td>115</td>
</tr>
<tr>
<td>Resurfacing</td>
<td>0.75</td>
<td>38</td>
</tr>
<tr>
<td>Major widening</td>
<td>5.00</td>
<td>251</td>
</tr>
<tr>
<td>Minor widening</td>
<td>1.90</td>
<td>95</td>
</tr>
<tr>
<td>New Bridges</td>
<td>192</td>
<td>9624</td>
</tr>
<tr>
<td>Bridge Replacement</td>
<td>222</td>
<td>11128</td>
</tr>
<tr>
<td>Major rehabilitation</td>
<td>134.4</td>
<td>6737</td>
</tr>
<tr>
<td>Minor rehabilitation</td>
<td>11.91</td>
<td>597</td>
</tr>
</tbody>
</table>

\(^a\) Increase rural energy consumption by 20\% for urban construction
NEPA: Also Consider Climate Impacts on Project

- Climate Adaptation Planning
 - Discuss *climate change effects that should be considered in project development* such as flooding in low lying areas, development of coastal infrastructure
 - Also discuss *reasonably foreseeable future conditions* with no action
AASHTO Comments

- Planning process is the appropriate venue for developing and implementing GHG reduction strategies not project level
- Project-level analysis not meaningful
 - Inadequate tools
 - Global emissions vs project-level analysis disconnect
 - Basis for 25,000 mmte threshold?
- Major emphasis on adaptation needed in transportation policy
NEPA: Bottom Line

It all depends…

– What emissions sources are included in total?
– How are direct and indirect emissions defined?
– Life cycle emissions?
– What analysis year (or years) are used?
– Speed assumptions?
– Fleet assumptions?
– New VMT vs. VMT shifted from elsewhere?
– Many questions…
Recent History – Court Rulings on NEPA/GHG

3 cases overturned FONSI/EA/EIS for lack of climate analysis:
 – Center for Biological Diversity et al. v. NHTSA
 – Mid States Coalition for Progress v. Surface Transportation Board
 – Border Power Plan Working Group v. DOE

4 cases upheld lack of climate analysis or sufficiency of analysis:
 – Audubon v. DOT, 2007
 – Friends of the Earth v. Mosbacher, 2007
 – Association of Public Agency Customers, Inc. v. Bonneville Power Admin, 1997
 – Mayo Foundation v. Surface Transportation Board, 2006
DEIS for Columbia River Crossing

- Won national award for GHG analysis from National Association of Environmental Professionals
- DEIS issued May 2008
- Project is for congested river crossing between Portland OR and Vancouver WA
- Estimated cost of $3.1 - $4.2 billion
- 4 build alternatives – all are a combination of transit (BRT or LRT) and improved highway capacity
DEIS for Columbia River Crossing

The Interstate Bridge
I-5 over the Columbia River

- 2 side-by-side bridges
- Northbound built in 1917, southbound built in 1958
- 3 lanes each direction
- The only red light on I-5 from Canada to Mexico
• Build alternatives have lower GHG than no-build
• Relatively small differences among build alternatives
• Transit GHG emissions varied substantially
• Highest GHG: The alternative with more transit, higher toll, and less highway improvement

Source: Colin McConnaha, Parametrix, Inc.
One Emerging Tool: GreenSTEP

GreenSTEP = Greenhouse gas State Transportation Emissions Planning model

- A statewide planning model to help Oregon develop a statewide transportation strategy on greenhouse gas (GHG) emissions
- Complements metropolitan travel demand models and ODOT’s integrated statewide model
- Peer Review by Oregon travel modelers and experts in other disciplines
- Many elements have been estimated using 2001 NHTS data
- Open source model developed and implemented in open source software (R programming language)
- Partially developed with FHWA SPR program funds
GreenSTEP Model

- Synthetic Household Generation
- Urban area land use and transportation system characteristics
- Household vehicle ownership
- Household vehicle travel
- Household vehicle characteristics
- Adjust household income due to travel cost change

Demand management program adjustments to VMT
- Heavy vehicle VMT
- MPG adjustments due to congestion
- Fuel consumption by type
- CO₂ equivalent emissions by fuel type (including well to wheels)

Individually Household Level

Aggregate Level
GreenSTEP Inputs

- Demographic changes
- Relative amounts of development occurring in urban
- Metropolitan and other urban area densities
- Urban form
- Amounts of metropolitan area public transit service
- Highway capacity
- Vehicle fuel efficiency
- Vehicle ages

- Electric vehicles
- Fuel & carbon pricing
- VMT pricing
- Demand management
- Effects of congestion on fuel economy
- Carbon content of fuels – including well to wheels impacts
- CO2 production from electrical power use for transportation
GreenSTEP can Analyze Many Different Strategies
Summary

- Transportation planning process will need to consider GHG emissions and climate change impacts
- CEQ Draft Guidance will impact required NEPA Analysis
- Consider both
 * impact of project on GHG; and
 * impact of climate change on project
- Tools will be needed to evaluate GHG emissions
- Documentation will be important
- Mitigation actions can be helpful
VI. Strategies to Reduce Transportation GHG Emissions
Five GHG “Legs”

Transportation GHG reduction has 5 legs

1. Vehicle efficiency
2. Low-carbon fuels
3. VMT Reductions (including land use)
4. Vehicle/System Operations
5. Construction, Maintenance, and Agency Operations

Examples:

- Higher CAFE standards
 380 gm/mile to 250 gm/mile 2016
- CA’s low carbon fuel standard
- Less travel, could be in part due to land use changes
- Signalization, ITS, Eco-driving
- Materials, maintenance practices
Vehicle/Fuel Improvements Will be the **Dominant** Source of GHG Reductions for LDVs

By 2020-2030:

- 50% cut in GHG/mile is feasible from conventional technologies and biofuels
- Compare these GHG rates in U.S. and Europe:
 - 380 grams/mile 2009 in the U.S.
 - 250 grams/mile 2016 under new Obama standard
 - 256 grams/mile 2007 actual in the E.U.
 - 209 grams/mile 2012 under E.U. regulation
 - 153 grams/mile 2020 under E.U. regulation
- LDV purchase cost will rise, but fuel savings will be greater than vehicle cost increase
- Win-win-win: reduces energy use, reduces GHG, saves money
EPA MY2012-2016 GHG Standards Projections Based on Public Target

<table>
<thead>
<tr>
<th></th>
<th>Fuel Economy</th>
<th>Greenhouse Gas Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 CAFE standard</td>
<td>27.3 mpg</td>
<td>325 gpm</td>
</tr>
<tr>
<td>2016 target GHG standard</td>
<td>(34-35.5 mpg)</td>
<td>250 gpm</td>
</tr>
<tr>
<td>% GHG reduction</td>
<td>--</td>
<td>23%</td>
</tr>
</tbody>
</table>
A 2007 MIT study predicts MPG gains of 80-85% for model year 2030 vehicles via continuous improvement of conventional technology at a rate of 2-2.5%/year.

Low-Carbon Fuels

- Many different low-carbon fuel possibilities:
 - Corn ethanol
 - Sugar cane ethanol
 - Diesel
 - Cellulosic biofuel
 - Algae biofuels
 - Hydrogen
 - Electricity from renewable energy or nuclear power
 - Electricity from utilities with carbon capture & storage

- Carbon intensity measured as GHG/unit of energy – must account for “life-cycle” emissions

- California LCFS:
 - Adopted in 2008
 - Aims to reduce carbon intensity of passenger vehicle fuels by 10% by 2020
 - Measures carbon-intensity on a life-cycle basis – "from field to wheel."
Lifecycle Greenhouse Gas Emissions

Figure 1. Net Lifecycle Greenhouse Gas Emissions By Lifecycle Component With 100 Year Time Horizon And 2% Discount Rate.
Biofuels

 - Includes 21 billion gallons of advanced biofuels
 - Up from 5 billion in 2006.
- To achieve that goal, EPA mandates % of biofuels to be blended into all gasoline.

Biofuel Usage Mandates under EISA
(billions of gallons)
Source: Bill Malley, Perkins-Cole

- Regular
- Advanced
Possible State DOT Roles in Decarbonization

1. **Influence state policies** on low-carbon fuels/vehicles
2. **Use planning scenarios** to emphasize need for decarbonization
3. **Plan/provide plug-in infrastructure** for electric and PHEV vehicles (coordinate with utilities)
4. **Support federal transportation funding** for technology/fuel R&D
5. **Educate** the public and elected officials
6. **Provide incentives** for consumers to use lower carbon **fuels/vehicles** (lower fees for low-carbon vehicles/fuels)
7. **Support** low-carbon fleet conversion for state vehicle fleets
8. **Adjust** facilities and operations to accommodate decarbonized vehicles and fuels
What Would it Take to Achieve 74% LDV GHG Reduction by 2050?
1% Annual VMT Growth + 100 mpgge LDV Fleet + 10% Operational Efficiency

Reducing VMT growth (smart growth, transit, carpooling, vanpooling, walking, TDM, and pricing-related strategies) to +1.0% annual.

System/vehicle operational efficiency (speed limit reductions/enforcement, ecodriving, smoothing out traffic flow, proper tires and inflation, removing bottlenecks, etc.)

Highest LDV CO2e Emissions Reductions (79% Reduction CO2e/Vehicle Mile) by 2050

Light duty fleet GHG emissions

GHG Goal 70% Reduction from 2005
Many Transportation Strategies

- Economy-wide carbon cap and trade (raises fuel prices)
- Transportation pricing (PAYD insurance, parking pricing, tolls, higher user fees, cordon pricing, congestion pricing, etc.)
- Carpooling and vanpooling (currently carry 7 times as much work trip PMT as transit)
- Bike/ped and transit (but some transit is higher GHG than LDV)
- Trip chaining
- Tele-working, tele-shopping, tele-education, tele-medicine
- Compact land use

In 2008, when fuel prices spiked and VMT dropped, where did it go? We know <2% of the lost VMT went to transit, but don’t know where the rest of the drop went.
Cautionary Note on VMT as Metric

• Does not take into account:
 – Type of fuel
 – Fuel efficiency of vehicle
 – Passenger vs freight trip
 – Number of passengers per vehicle

• As light duty passenger fuel economy increases, cost effectiveness diminishes
 – TCM lessons from 1990s – marginal emission reductions, increasing costs as technology improves
Pricing – A Necessary and Powerful Tool

- Without price signals, reducing driving extremely difficult
- Pricing incentivizes 3 legs of the GHG stool
 - Purchase of lower-carbon vehicles and fuels; and
 - Lower VMT
 - Eco-driving behavior
- Many different pricing tools available: auto “feebates,” carbon/fuel prices, PAYD insurance, mileage fees, parking pricing, congestion pricing, etc.
- Pricing produces revenue to invest in alternatives

“We know we need to get ready for a world in which energy will only be more expensive.” -- Wal-Mart
Consumers respond to pricing

Gasoline Prices Surged in Summer ‘08, and Consumers Responded, revealing fuel price elasticity

National Vehicle Miles Traveled vs. Gasoline Prices

2005: 258 billion miles, $2.19 per gallon
2006: 260 billion miles, $2.93 per gallon
2007: 260 billion miles, $3.10 per gallon
2008: 260 billion miles, $4.10 per gallon

Monthly total VMT for June of each year.
Carpooling and Vanpooling

- **Important but underappreciated** (7 times as many PMT for work trips nationally are in carpools and vanpools as on transit)
- **Low cost** for government, wide availability, saves users money
- **Effective in all kinds of areas** – rural, small urban areas, suburban, urban
- **Nearer-term payoff** than most transportation strategies
- Atlanta MPO and WASHCOG **pay for commuters to carpool** ($3/day Atlanta, $2/day WASHCOG)
Transit Helps Reduce GHG – but has Small Impact Nationally

- Transit serves many goals and has broad support, but transit serves just 1% of PMT and 0% of freight

- APTA studies: (a) Transit reduced GHG by 6.9 MMT in 2005; or (b) by 35 MMT in 2005. This is 0.3% to 1.7% of U.S. transportation GHG

- DOE: Bus transit has higher GHG/passenger mile traveled than average auto use in the U.S.

- Transit GHG benefits are realized with highly patronized services in high volume corridors -- a market limited to high volume, generally densely developed corridors.
GHG/Passenger Mile for Different Modes

<table>
<thead>
<tr>
<th></th>
<th>Occupancy</th>
<th>GHG/PMT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto, SOV</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>SUV, average</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>Transit Bus, average</td>
<td>8.80</td>
<td>0.71</td>
</tr>
<tr>
<td>Auto, Average</td>
<td>1.57</td>
<td>0.58</td>
</tr>
<tr>
<td>Carpools, average</td>
<td>2.10</td>
<td>0.47</td>
</tr>
<tr>
<td>Amtrak</td>
<td>20.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Rail Transit, average</td>
<td>22.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Motorcycles, average</td>
<td>1.20</td>
<td>0.37</td>
</tr>
<tr>
<td>Commuter Rail, average</td>
<td>31.30</td>
<td>0.36</td>
</tr>
<tr>
<td>Vanpools, average</td>
<td>6.10</td>
<td>0.21</td>
</tr>
<tr>
<td>Walking and Biking</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* PMT = Passenger Mile Travelled
Land Use Effect on GHG is Modest – and Depends on Assumptions

- “Growing Cooler” finds compact development can achieve 3.5-5% reduction in transportation GHG, 2007-2050
- GC’s assumptions of land use change are very aggressive:
 - 67% of all development in place in 2050 will be constructed or rehabbed after 2005
 - 60-90% of that development is compact (comparable to 13.3 housing-units per acre)
 - Compact development has 30% less VMT than very sprawling development
- “Moving Cooler” finds smaller GHG effect, even with 90% compact land use for future urban development
2009 TRB Study

- 2009 TRB Study finds <1% to 11% household GHG reduction by 2050, depending on aggressiveness of assumptions
 - Study looks at effects of compact development on travel, energy use, and CO2 emissions
 - Disagreement among committee members about feasibility of changes in development patterns and public policies necessary to achieve high-end of estimated reductions
- Recommendations
 - Policies that support compact, mixed use development should be encouraged
 - More carefully designed studies of the effects of land use patterns on VMT, energy use, CO2 emissions are needed to implement compact development more effectively
Less VMT via Land Use: The 8 “D”s

1. Diversity (mix) of land uses
2. Density of urban form – e.g. UGB
3. Design - quality of the (ped/bike) environment
4. Destination accessibility – O/D links
5. Distance to transit
6. Development scale (site, sector, municipality, region)
7. Demographics
8. Demand Management
“Moving Cooler” (MC)

- Evaluated non-technology transportation strategies for (a) GHG reductions and (b) cost-effectiveness in reducing GHG

- Analyzed 46 individual transportation strategies and 6 “bundles” of strategies

- The 46 individual strategies: pricing strategies, transit strategies, land use strategy, operational strategies, freight strategies, nonmotorized strategies, regulatory strategies, bottleneck/capacity strategies, etc.
Individual strategies achieve GHG reductions ranging from <0.5% to 4.0% cumulatively 2010-2050, compared to on-road baseline GHG

- 15,186 mmt - carbon pricing equiv to $2.71/gallon
- 3,361 mmt – VMT fees equiv to $2.53/gallon
- 2,428 mmt – speed limit reductions
- 2,233 mmt – PAYD auto insurance (100%)
- 1,815 mmt – eco-driving by 20% of drivers
- 1,445 mmt – at least 90% of new urban development is compact, with high quality transit
- 1,241 mmt – congestion pricing fully implemented in 120 metro areas at 65 cents/mile
- 575 mmt - $1.2 trillion transit expansion
- 352 mmt – combination of 10 freight strategies
Maximum strategy bundle can reduce cumulative on-road GHG by 16% compared to on-road baseline, over 40 years

- Intercity tolls imposed in 2010 at 5 cents/mile
- Congestion pricing at 65 cents/mile in 120 metro areas
- $400 permit fee to park on neighborhood streets
- $1.2 trillion transit expansion
- Bike lanes every 1/4 mile
- New and increased parking fees
- 90% of new urban development is compact, in dense Census tracts, with high quality transit
- Heavier and longer trucks allowed (up to 139,000 lbs)
- Eight more freight strategies
- Eco-driving by 20% of drivers
- Speed limit reductions
- Top 200 bottlenecks improved to LOS D
Estimated Transportation and Land Use GHG Reductions - Iowa

Figure 5-2. Aggregate GHG Emission Reductions, 2009–2020

- TLU 10 - Low Carbon Fuel Standard-20% reduction
- TLU 6 - Light-duty vehicle fuel efficiency
- TLU 9 - Freight strategies –truck and rail
- TLU 8 - New vehicle standards GHG and fuel efficiency
- TLU 7 - Fuel efficiency operations for light-duty vehicles
Table ES-3. (continued) Transportation and Land Use Policy Options

<table>
<thead>
<tr>
<th>No.</th>
<th>Policy Option</th>
<th>GHG Reductions (MMtCO₂e)</th>
<th>Net Present Value 2009–2020 (Million $)</th>
<th>Cost-Effectiveness ($/tCO₂e)</th>
<th>Level of Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>2020</td>
<td>Total 2009–2020</td>
<td></td>
</tr>
<tr>
<td>TLU-1</td>
<td>Smart Growth Bundle with Transit</td>
<td>0.076</td>
<td>0.242</td>
<td>1.53</td>
<td>−$377</td>
</tr>
<tr>
<td>TLU-1a</td>
<td>Expand and Improve Transit Infrastructure</td>
<td>0.004</td>
<td>0.026</td>
<td>0.127</td>
<td>$7.2</td>
</tr>
<tr>
<td></td>
<td>GHG Impacts for State and Local Capital Funding</td>
<td>Quantified as part of TLU-1 and TLU-1a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLU-4</td>
<td>Support Passenger Rail Service in Iowa</td>
<td>N/A</td>
<td>0.008</td>
<td>0.026</td>
<td>$15</td>
</tr>
<tr>
<td>TLU-5a</td>
<td>Adopt Best Workplaces for Commuters in Iowa</td>
<td>0.02</td>
<td>0.02</td>
<td>0.21</td>
<td>$18</td>
</tr>
<tr>
<td>TLU-5b</td>
<td>Distributed Workplace Models</td>
<td>Non-quantified, qualitative option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLU-6</td>
<td>Light Duty Vehicles Fuel Efficiency Incentives</td>
<td>0.44</td>
<td>3.65</td>
<td>17.70*</td>
<td>NQ</td>
</tr>
<tr>
<td>TLU-7</td>
<td>Fuel Efficient Operations for Light Duty Vehicles</td>
<td>0.11</td>
<td>0.65</td>
<td>3.41</td>
<td>−$306.9</td>
</tr>
<tr>
<td>TLU-8</td>
<td>New Vehicle Standards (Tailpipe GHG and Fuel Economy)</td>
<td>N/A</td>
<td>0.8</td>
<td>4.1</td>
<td>−$246</td>
</tr>
<tr>
<td>TLU-9</td>
<td>Freight Strategies (Truck and Rail)</td>
<td>0.29</td>
<td>0.63</td>
<td>5.9</td>
<td>$30</td>
</tr>
<tr>
<td>TLU-10</td>
<td>Fuel Strategies (20% Low Carbon Fuel Standard)</td>
<td>0.60</td>
<td>5.11</td>
<td>22.03</td>
<td>−$1,359</td>
</tr>
<tr>
<td></td>
<td>Sector Total After Adjusting for Overlaps and Synergies</td>
<td>1.64</td>
<td>11.14</td>
<td>55.03*</td>
<td>−$2,218.59</td>
</tr>
<tr>
<td></td>
<td>Reductions From Recent Actions (Federal CAFE Requirements)</td>
<td>0.26</td>
<td>1.93</td>
<td>9.39</td>
<td>Not Quantified</td>
</tr>
<tr>
<td></td>
<td>Sector Total Plus Recent Actions</td>
<td>1.9 (6.3)</td>
<td>13.07 (48)</td>
<td>64.42</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CAFE = corporate average fuel economy; GHG = greenhouse gas; MMtCO₂e = million metric tons of carbon dioxide equivalent; $/tCO₂e = dollars per metric ton of carbon dioxide equivalent; N/A = not applicable.
Costs/Savings from 2020 Policy Options

Iowa Policy Options Ranked by 2020 Cost / Savings per Ton GHG Reduced

GHG = greenhouse gas; EEC = Energy Efficiency and Conservation; TLU = Transportation and Land Use; CRE = Clean and Renewable Energy; AFW = Agriculture, Forestry, and Waste Management.

Negative values represent net cost savings and positive values represent net costs associated with the policy option.
Vehicle/System Operations to Reduce GHG

Potential for 10-20% LDV GHG reduction by:

- Managing speed (35-55 MPH is optimal)
- Speed limits/enforcement (could reduce fuel use 2-4%)
- Eliminating bottlenecks
- “Active” traffic management to smooth traffic flow
- Improving signal timing (could reduce 1.315 MMT CO$_2$/yr)
- Roundabouts (multiple benefits)
- Reducing car and truck idling
- Work zone management to smooth flow
- Encouraging eco-driving
EcoDriving

- EcoDrivers can reduce fuel and CO2 by an average of 15% through smart driving and vehicle maintenance.
- If 50% of drivers practiced EcoDriving, CO2 would drop by 100 million tons annually (the equivalent of heating and powering 8.5 million households)
- Pilot by City of Denver with 300 drivers achieved 10% fuel reduction and similar GHG reduction
- Useful for HDV, MDV, and LDV drivers
- Major push in Europe as GHG strategy
- Aided by dashboard displays of real-time MPG
EcoDriving

- EcoDrivingUSA™ -- nationwide effort to increase overall vehicle fuel economy and preserve the environment
- Partnership of Governors, auto industry, environmental groups
- Website:
 - Be an EcoDriver
 - EcoCalculator
 - EcoDriving Quiz
 - Virtual Road Test
 - Is Your Community EcoDriving?
 - Educational Tools
 - News and Events
 - Join the EcoDriving Movement
 - Link this website on your blog or site
- For more information and to join the EcoDriving movement contact: Seena Faqiri at 202.326.5518 or sfaqiri@autoalliance.org.
Congestion Impacts on GHG

- Studied congestion and impact on CO2, used detailed energy and emissions models linked to real-world conditions
- CO2 emissions can be reduced with three strategies
 - Reduce severe congestion, allow traffic to flow at higher speeds
 - Reduce excessively high free-flow speeds to more moderate conditions
 - Eliminate accel/decel events associated with stop and go traffic in highly congested conditions
- Author: Dr. Matthew Barth, et al., May 2008
- http://www.its.uci.edu/its/whatsnew/barth2.pdf
Effect of Speed on GHG

Traffic Operation Strategies To Reduce CO$_2$

Parsons Brinckerhoff / Sarah J. Siwek & Associates, Inc. | Climate Change

126
Cost of Congestion

Cost of Wasted Time and Wasted Fuel Due to Highway Congestion (Billions of 2009 Dollars)

The cost of highway congestion is up 20% percent in inflation-adjusted terms since 1985.

Source: Texas Transportation Institute
Operational Strategies to Reduce GHG

- Significant sources of GHG and energy use
- Many opportunities to reduce GHG and energy cost from current system:
 - LED traffic lights
 - Low carbon pavement
 - Energy-efficient buildings
 - Reduced roadside mowing
 - Solar panels on ROW
 - Alt fuels and hybrid vehicles in DOT fleets
 - Alt fuel buses
Portland, OR Signal Timing

- Began 2002, 10-year project
- Climate Trust funded project and pays for CO2 offsets from project
- Improve signal timing on 17 major arterials
 - Optimize traffic flow
 - Reduce idling, acceleration, CO2 emissions and emissions from criteria pollutants
- Model for traffic signal offset projects

http://www.climatetrust.org/traffic_signals.html
Solar Panels for Highway Lighting – Oregon DOT

- 594 solar panels produce 122,000 KWH/year to light interchange
- Avoids nearly 43 metric tons of GHG/year from normal electricity
- $1.28 M project in operation for over a year
- PPP of OR DOT, PGE, and US Bank, using state and federal tax credits
- Could be a model for other DOTs
- ORDOT planning 2 additional projects
- www.oregonsolarhighway.com
FHWA- Carbon Sequestration Pilot Program

- Pilot established in 2008
- Assess how much carbon can be sequestered by native vegetation in the NHS right-of-way
- Determine feasibility of carbon credit sales by state DOTs and estimates of amount of revenue potential for state DOTs
- Final report available
 - Estimate of NHS ROW in each state
 - Highway carbon sequestration estimator
- Webinar Wednesday, July 14 to discuss findings

Freight – Ton-Mile/GDP Trends

Goods Movement and GDP

For every trillion dollar increase in GDP, we expect an additional 242 billion ton-miles.

Source: Corbett and Winebrooke, 2009.

GHG, Diesel and Black Carbon

• Black carbon is a major contributor to climate change, diesel engines a primary source of BC
• Black carbon particles absorb sunlight, generate heat in the atmosphere, warms the air
• CO2 has long atmospheric lifetime; black carbon remains in atmosphere only a few weeks
 – Reducing black carbon provides immediate reduction in the rate of warming along with public health benefits.
• Freight strategies that impact diesel engines reduce black carbon and PM and provide immediate benefits.
Truck GHG is Growing Faster than Other Transportation GHG

GHG Emissions by Transportation Mode
(Million Metric Tons CO2 Equivalent)

Source: History: Transportation Energy Databook 28th Edition
Projection: Annual Energy Outlook 2009 Updated Reference Case do41409a
Freight GHG – Barges and Rail
Source: Texas Transportation Institute and Center for Ports and Waterways
Freight Rail Can Relieve Congestion

Cumulative Reduction in GHG Emissions if 10% of Long-Haul Freight That Moves by Truck Moved by Rail Instead (million tons)

For simplicity, data assume constant 110 ton-miles per gallon for trucks and 436 ton-miles per gallon for rail through 2020 and that GHG emissions consist solely of 22.4 pounds of CO2 per gallon of diesel. Based on truck movements more than 500 miles in length as forecast by AASHTO.
Rail Fuel Efficiency has Improved

Since 1980, Rail Freight Volume Has Nearly Doubled But Rail Fuel Consumption is Only Slightly Higher
(Index 1980 = 100)

*In freight service **revenue ton-miles Data are for Class I railroads. Source: AAR
Freight GHG Strategies in State Climate Action Plans

- Anti-idling programs
- Truck stop electrification
- Speed limit enforcement
- Freight villages/consolidation centers
- Feeder barge container service
- Bottleneck reduction
- Traffic flow improvements
- Pre-clearances at scale houses
- Truck driver training
- EPA SmartWay up-grade kits & loans & diesel retrofits
- Improvements to highway grade crossings

- Efficient Intermodal Facilities
- ECOdriving
- Incentives to retire older trucks
- Freight logistics improvements
- Shifting freight from truck to rail
- Hybrid power trucks
- Low-viscosity lubricants
- Single wide-base tires
- Automatic tire inflation systems
- Retrofits - PM and “Black carbon” reduction technologies 85% reduction in PM

Detailed info available in NCHRP 20-24(59), Appendix C
“Best Practices Guidebook for GHG Reductions in Freight Transportation”

- NC State University report to US DOT, 2007
- Covers trucks, freight rail, marine, air freight, pipeline
- Identifies 33 “best practices” for reducing truck GHG (plus 26 for other freight modes)
- All 33 could reduce truck GHG in 2025 by 12% below 2003 (compared to 67% increase in truck GHG if best practices are not implemented)
Diesel Retrofits Reduce PM and Black Carbon

- On-road diesel truck retrofits reduce PM 99% = 2007 EPA standards and also reduce black carbon
- Locomotive retrofits reduce PM and black carbon
 - Achieve over 76% PM and 25% fuel efficiency
- Cost-effective way to reduce emissions and save energy immediately.
- Retrofits of construction equipment, state fleets and locomotives could be promising as state DOTs work to reduce emissions to meet potential planning requirements
The Diesel Locomotive Retrofit Process

- Each existing locomotive is stripped from the deck up, removing the large, single diesel engine.
- Three smaller, ultra-clean diesel generators are fitted onto the platform, along with control and operating equipment.
- An immediate emissions reduction of 86% ozone precursors, 76% Particulate Matter, and a 25% fuel savings, with a corresponding 25% reduction in greenhouse gas CO₂ emissions, is realized following this diesel retrofit.
- Very cost-effective CMAQ project.
Cleaner Locomotive
McKinsey: Available Technologies can Reduce 3 Billion Tons GHG/Year at < $50/ton (compare to projected 9.7 billion tons economy-wide in 2030)

The analysis found that abatement options are highly fragmented and widely spread across the economy. Almost 40 percent of abatement could be achieved at “negative” marginal costs, i.e., the savings over the lifecycle of these options would more than pay for the incremental investment, operating, and maintenance costs. Realizing the potential of many negative-cost options would require overcoming persistent barriers to market efficiency.
European View of Transport GHG Strategies
(European Council of Ministers of Transport, 2006)

- “The most effective measures available include fuel taxes, vehicle and component standards, differentiated vehicle taxation, support for eco-driving and incentives for more efficient logistic organization, including point of use pricing for roads.”

- “More integrated transport and spatial planning policies might contain demand for motorized transport.”

- Mode shifts ... cannot ... form the corner-stone of effective CO2 abatement policy and the prominence given to modal shift policies is at odds with indications that most modal shift policies achieve much lower abatement levels than measures focusing on fuel efficiency.”

- “Ultimately higher cost energy sources …. will be required if there are to be further cuts in transport sector CO2 emissions.”
Summary

Many strategies are needed to reduce transport GHG. No silver bullet. Will need full mix of strategies including:

- Maximize energy efficiency of current vehicle technology
- Decarbonize vehicles and fuels world-wide
- Adopt pricing measures to reward conservation and tech innovation
- Push “eco driving” and system/speed management
- Adopt more efficient land use
- Support carpools & vanpools, biking, walking, transit use, trip chaining, telecommuting
- Adopt low carbon, energy-conserving strategies in construction, maintenance, and agency operations
- Retrofit legacy fleets to reduce PM and black carbon
- Implement wide-ranging freight technology and logistics improvements
VII. Participant Workshop
Breakout Sessions

A working session in break-out groups to identify an initial set of activities for Iowa DOT to pursue:

(a) GHG reduction strategies and framework;
(b) Climate adaptation planning;
(c) Public communication strategies;
(d) Outreach/collaboration with other agencies and organizations.
Resources

- AASHTO: http://climatechange.transportation.org/
- Intergovernmental Panel on Climate Change (IPCC): http://www.ipcc.ch/
- The Pew Center on Global Climate Change: http://www.pewclimate.org/
- EPA Climate Change Program http://www.epa.gov/climatechange/
Resources – Key Documents

- AASHTO, “Primer on Transportation and Climate Change,” 2008
- Pew Center on Climate Change, “Climate Change 101”
Resources – AASHTO

• **AASHTO Climate Change Steering Committee:** CCSC acts as a focal point and coordinating body for AASHTO’s activities related to climate change. CCSC members act as the focal point for AASHTO on climate change policy issues and provide oversight and guidance to AASHTO’s Climate Change Technical Assistance Program.

• **AASHTO Technical Assistance Program on Climate Change:** This is a new, voluntary program that provides timely information, tools and technical assistance to assist AASHTO members in meeting the difficult challenges that arise related to climate change.

For more information on AASHTO’s Climate Change Steering Committee and Climate Change Technical Assistance Program, please contact: Caroline Paulsen at AASHTO (202) 624- cpaulsen@aashto.org
Contact Info for Workshop Instructors

Cynthia J. Burbank
Parsons Brinckerhoff
burbank@pbworld.com
202-661-9262

Sarah J. Siwek
Sarah J. Siwek & Associates
ssiwek@aol.com
310-417-6660 x224