

Transportation and Climate Change Resource Center

REAL SOLUTIONS FOR CLIMATE CHANGE

Electric Vehicles - What, When, Why, and How

March 17, 2011

Presented by:

DAHLIA GARAS, Plug-in Hybrid & Electric Vehicle Research Center, UC Davis MIKE NICHOLAS, Plug-in Hybrid & Electric Vehicle Research Center, UC Davis ESRICK MCCARTHA, PJM Interconnection, LLC JEFF DOYLE, Washington State Department of Transportation

Transportation and Climate Change Resource Center

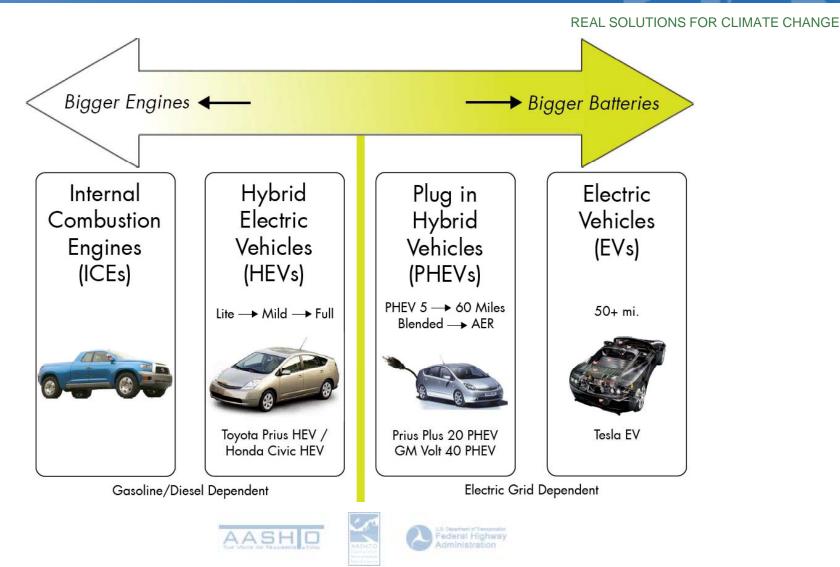
REAL SOLUTIONS FOR CLIMATE CHANGE

Introduction to Plug-in Hybrid and Electric Vehicles:

Federal Highway

MARCH 17, 2011

Presented by:


Dahlia Garas Program Manager

Mike Nicholas Post-Doctoral Researcher

Plug-in Hybrid & Electric Vehicle Research Center, UC Davis

Moving to Electric Drive

Comparing Benefits

REAL SOLUTIONS FOR CLIMATE CHANGE

.UG-IN HYBRID & ELECTRIC VEHICLE RESEARCH CENTER of the Institute of Transportation Studies

educing Your Transportation Footp

Based on the following criteria: miles driven per year: 10,000, 1 gallon of gas = 19.37 lbs. CO2; standard vehicle 25 mpg and uses 379 gallons of gas/yr.; hybrid vehicle 45 mpg and uses 211 gallons of gas/ yr; plug-in hybrid 70 mpg and uses 135 gallons of gas/yr. Battery Electric Vehicle pack size: 24 kWh, BEV consumption per year=2640 kWh, PG&E electrical grid 0.52 lbs CO₂ per/kWh of electricity

Eliminate 10 Miles of Driving per Week:

403 lbs. of Carbon Dioxide Eliminated

- Ride a bike
- · Walk
- Work From Home
- Ride Public Transportation
- Carpool
- 52 weeks per year=520 miles
- 1 gallon of gas= about 20 lbs. of CO₂
- Thats about 21 gallons of gas saved per year!
- 21 gallons of gasoline creates about 403 lbs. of CO2
- · With a little effort and planning, anyone can do this.
- · Possible to reduce CO2 footprint further, by driving less!

Purchase a Hybrid Vehicle:	Purchase a Plug-in Hybrid Vehicle:
3265 lbs. of Carbon Dioxide Eliminated	4523 lbs. of Carbon Dioxide Eliminated
• Toyota Prius: 48 mpg	• 2011 Chevy Volt
Honda Civic: 43 mpg	• 2011 Toyota Plug-in Prius
• 211 Gallons of gas used per year	• 2011 Fisker Karma

- About 169 gallons less per year than About 244 gallons less per year than a standard 25 mpg vehicle!
- At about 20 lbs. CO2 per gallon of gas, thats 3265 lbs. of CO2 eliminated per year!

ederal Highway

standard 25 mpg vehicle!

per year!

• At about 20 lbs. CO2 per gallon of

gas, that's 4523 lbs. of CO2 eliminated

Saves 379 gallons of gas used per year in a standard 25 mpg vehicle as electric vehicles use no gas! Only emission are "up steam" and

Purchase an All Electric

Vehicle:

6035 lbs. of Carbon Dioxide Eliminated

2010 Nissan LEAF

2011 Ford Focus

2011 BMW Active E

created during electricity generation A large portion of PG&E's system generation is hydro, nuclear, wind, and solar

•On the PG&E system, 1 kilowatt hour accounts for 0.524 lbs of CO2 •BEV with 24 kWh battery pack is estimated to use 2640 kWh/yr.

Fuel and CO2 Savings

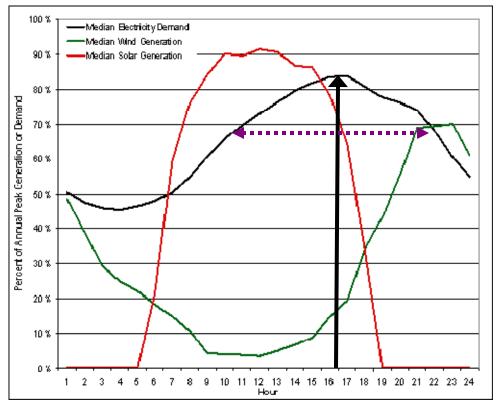
Drive a Hybrid Reduce driving Drive a PHEV Go all-electric 0 □ Fuel savings (gallons) -21 -169 -244 -379 -403 -1000 Carbon Dioxide reductions (lbs) -2000 -3000 -3265 -4000 -5000 -4523 -6000 -5958 -7000

Highly Operation Dependant

REAL SOLUTIONS FOR CLIMATE CHANGE

CO₂ benefits depend on:

- Battery size & range: PHEV 10 to PHEV 40+
- Lifestyle: frequency of travel over "electric range"
- <u>Charging opportunities</u>: Home, Work, Costco, Starbucks
- Price of gasoline & electricity
- Instrumentation of vehicle
- Speed and Terrain



PHEV Operating Costs

- Assumptions: mid-size car, baseline PG&E rates, 3\$/gal and conventional vehicle fuel economy of 30 mpg
- Electric: 11.09cents/kWh *.25kWh/mi = 2.77 ¢/mile
- Gasoline only: (3.00\$/Gal)/(30 mi/gal)= .10\$/mi = 10 ¢/mile
- Conventional Hybrid: (3.00\$/gal)/(48 mi/gal)= .0625 \$/mi= 6.25 ¢/mile
- Plug-in Hybrid: (Not so easy to calculate, depends on how long you drive, if you charge, etc.) = 3-6 ¢/mile

Median Generation and Demand for the Month of August (CA)

Source: Christopher Yang, UC Davis

REAL SOLUTIONS FOR CLIMATE CHANGE

- CA can easily demand 85% of maximum generating capacity onpeak
- Below 50% demand off-peak
- Last 25% of generating capacity is used less than 10% of the time; last 5% of generating capacity used less than 50 hrs/year
- Analysis shows the CA grid can charge 1 Million PHEVs off-peak, accounting for less than 1% of total electricity demand.
- Wind and solar are complementary renewable energy sources.

Charging Options

• 120 V

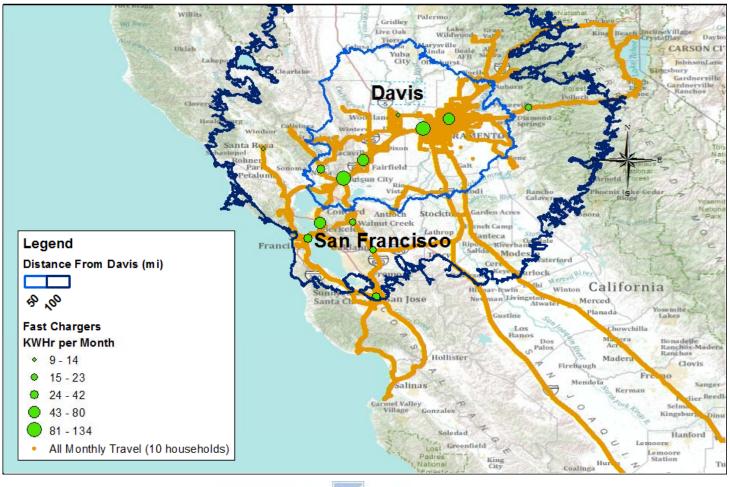
REAL SOLUTIONS FOR CLIMATE CHANGE

 Slow, but works with a standard outlet, may find more charging opportunities, may be up to 24 hrs to fully recharge

- 240V
 - Home recharging, requires a charging unit to be installed, typical 4-6 hour recharging time
 - Works for public charging at places where you WANT to be for a few hours

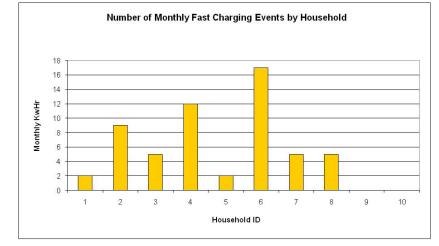
Fast-charging

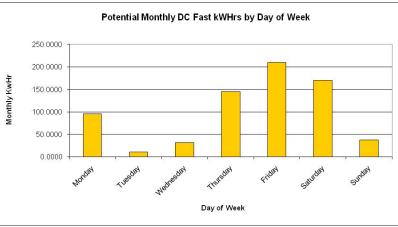
- 20 minutes for about 80 miles of range, may allow for extended driving distances
- Requires serious and expensive charging unit and installation

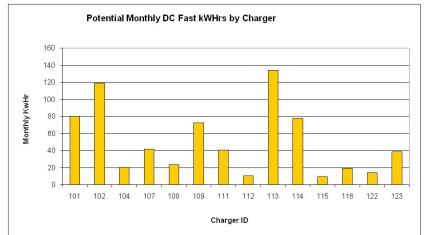

New ARRA Tax Credit

- Plug-In Electric Drive Vehicle Credit
 - Vehicles with 4 wheels and GVWR<14,000 lbs
 - Purchased after Dec. 31, 2009
 - Battery with at least 4 kWh that can be recharged from an "external source of electricity"
 - Minimum credit of \$2,500, up to \$7,500 depending on the size of the battery (\$417/kWh after 4kWh)
 - Credit phases out after the manufacturer has sold at least 200,000 vehicles
 - FS-2009-10, April 2009, Section 1141

Issues Surrounding Fast Chargers

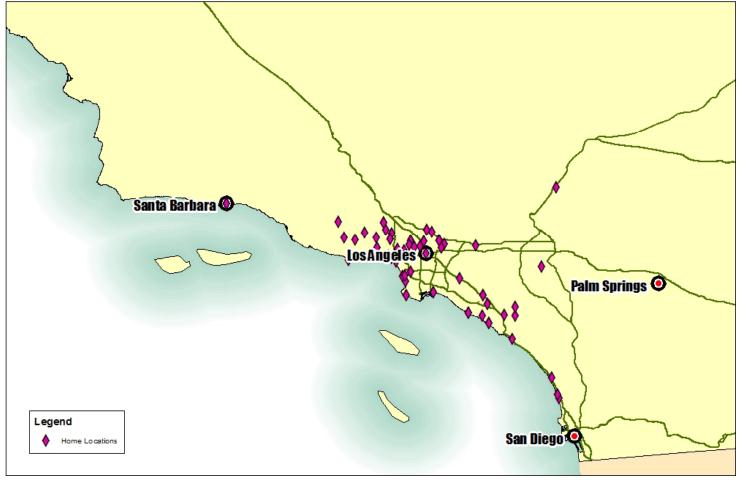


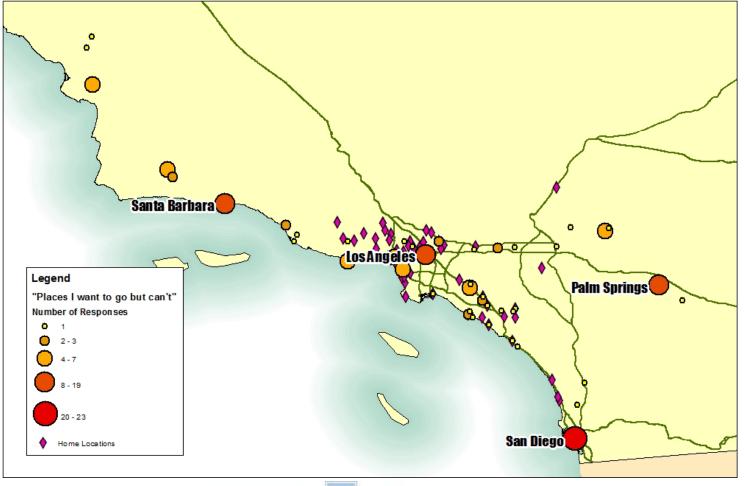



10 Households, ~1 Month of Data

Potential Monthly DC Fast kWHrs by Household Monthly KwHr n Household ID

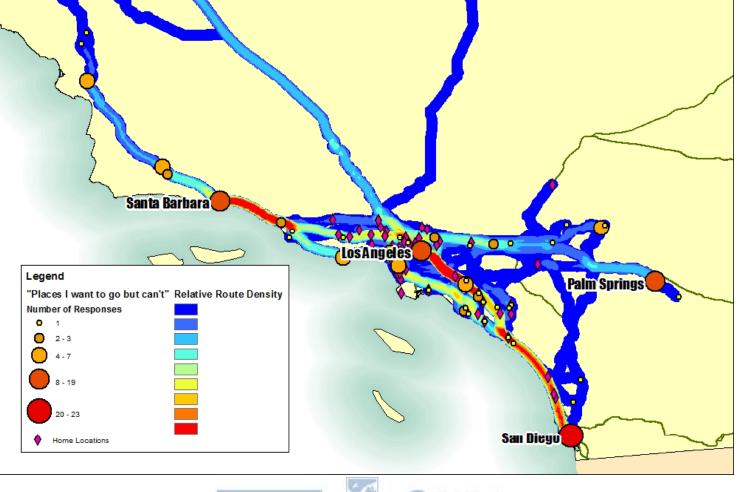
REAL SOLUTIONS FOR CLIMATE CHANGE



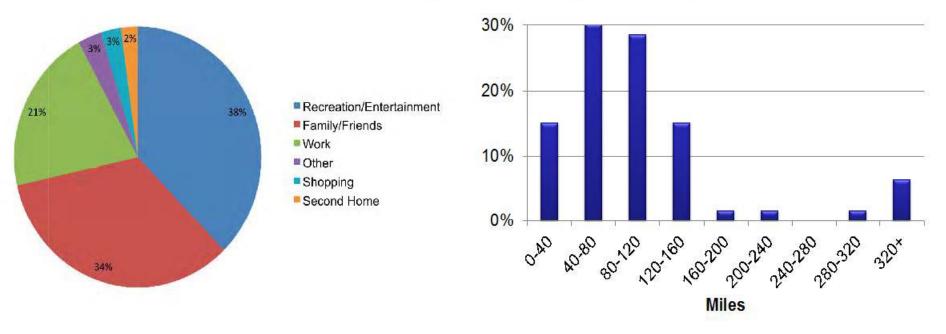

Federal Highway

Mini E Study Provides Insight

Where did they "want to go but couldn't due to range issues?"



Route Density

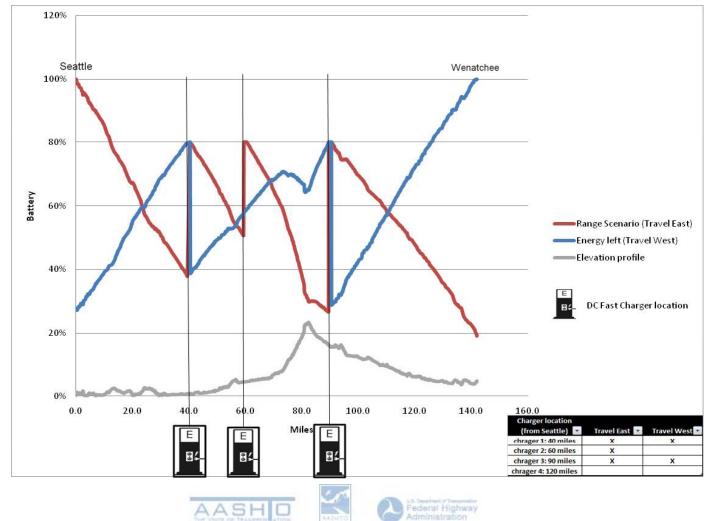


Destination Breakdown

REAL SOLUTIONS FOR CLIMATE CHANGE

Desired Destination Categories and Range Distribution From Maps 2 & 3 (n=126)

Charging Areas



REAL SOLUTIONS FOR CLIMATE CHANGE

Administration

Three charger scenario

Survey Tools

UCDAVIS UNIVERSITY OF CALIFORNIA

Section 5: Your Household

The information in this section will be used only for descriptive purposes. We need to know how well our respondents match the descriptions of households who buy new cars in the United States

5) Where do you live? This information is used only for the survey purposes. Note: You can move the location marker.

Address or intersection: 3rd and u

City: davis

State: CA Zip Code:

Formatted Address: 3rd St & University Ave, Davis, CA 95616 If the point on the map is not the correct location please move the red marker or Retry with a new address If the marker is the right loction, click Next

http://gis.its.ucdavis.edu

Transportation and Climate Change Resource Center

REAL SOLUTIONS FOR CLIMATE CHANGE

Electric Vehicles and the Power Grid

March 17, 2011

Presented by:

Esrick O. McCartha Client Manager PJM Interconnection, LLC

PJM's Responsibilities

- Ensures the reliability of the high-voltage electric power system
- Coordinates and directs the operation of the region's transmission grid;
- Administers a competitive wholesale electricity market;
- Plans regional transmission expansion improvements to maintain grid reliability and relieve congestion.

PJM's Responsibilities

REAL SOLUTIONS FOR CLIMATE CHANGE

Operators of for Energy Markets...

RELIABLY

Air Traffic Controllers for the Transmission Grid....

PJM as Part of the Eastern Interconnection

6,038 substations **United States** PJM Eastern Interconnection AASHC

REAL SOLUTIONS FOR CLIMATE CHANGE

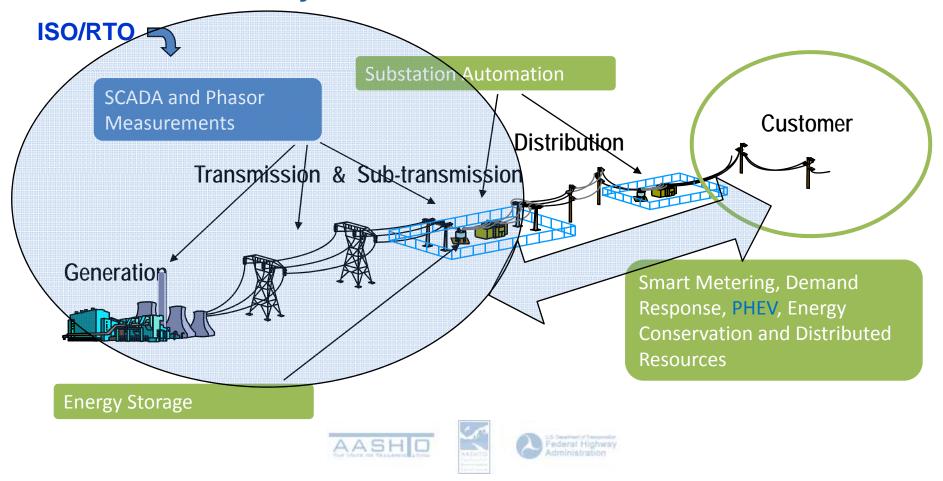
KEY STATISTICS	
PJM member companies	650+
millions of people served	51
peak load in megawatts	144,644
MWs of generating capacity	164,905
miles of transmission lines	56,250
GWh of annual energy	729,000
generation sources	1,310
square miles of territory	164,260
area served	13 states + DC
Internal/external tie lines	250

26% of generation in Eastern Interconnection

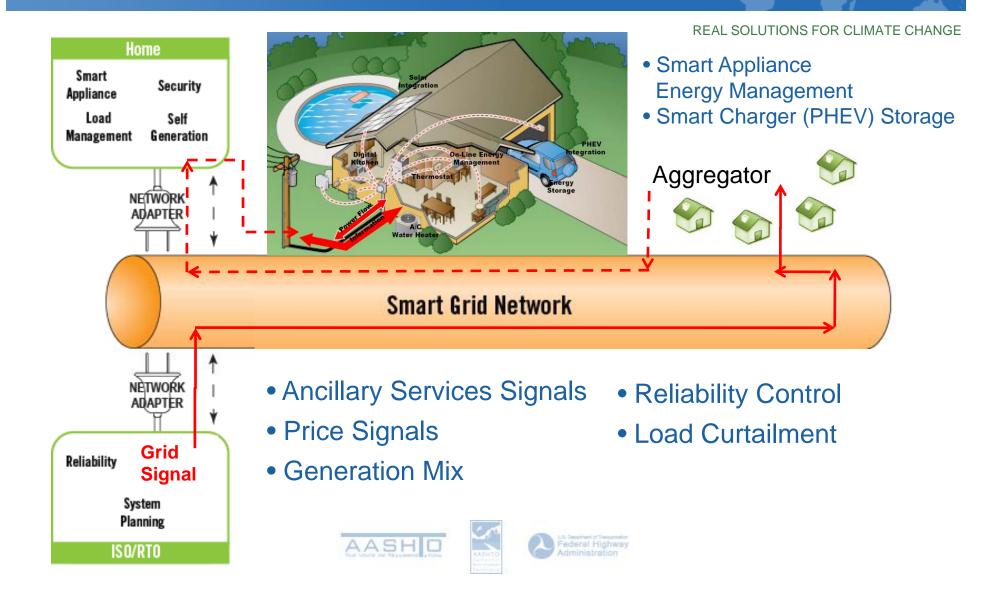
23% of load in Eastern Interconnection

19% of transmission assets in Eastern Interconnection

19% of U.S. GDP produced in PJM



Federal Highway


PJM's Role in the Smarter (Robust) Grid

REAL SOLUTIONS FOR CLIMATE CHANGE

The Smart Grid is realized by merging data from these areas of automation to achieve a total end-to-end system way to communication of the communication of

Smarter Grid Network – Smart Home

Integrate SMART Grid with PHEVs

- Develop Vehicle to grid / Plug-in hybrid electric vehicles (PHEVs) protocol
- Participate in Mid-Atlantic Grid Interactive Cars Consortium (MAGICC) – electric companies, research institutes, and vehicle manufacturers
- Test storage batteries in regulation markets

REAL SOLUTIONS FOR CLIMATE CHANGE

- Enable greater penetration of PHEVs through coordination with state SMART Grid and retail tariff innovation initiatives
- Develop infrastructure to support nontraditional demand based regulation resources
- Develop operational tools and forecasting techniques to enable PHEV deployment

Vehicle Economic Charging

Assumptions

- 1,000,000 PEV Vehicles by 2015
- ~18% of U. S. Population is within the PJM territory o ~ Average vehicle fuel usage: 22** mpg
- ~ 180,000 PEV Vehicles in the PJM Territory or ~ No tax compensation

Daily cost per PEV Vehicle

- Gasoline: 33 miles/day * \$3.00 /gal // 22 miles/gal = \$4.50
- Electric: 33 miles/day * \$.07 / kWh // 4 miles/kWh = \$0.60

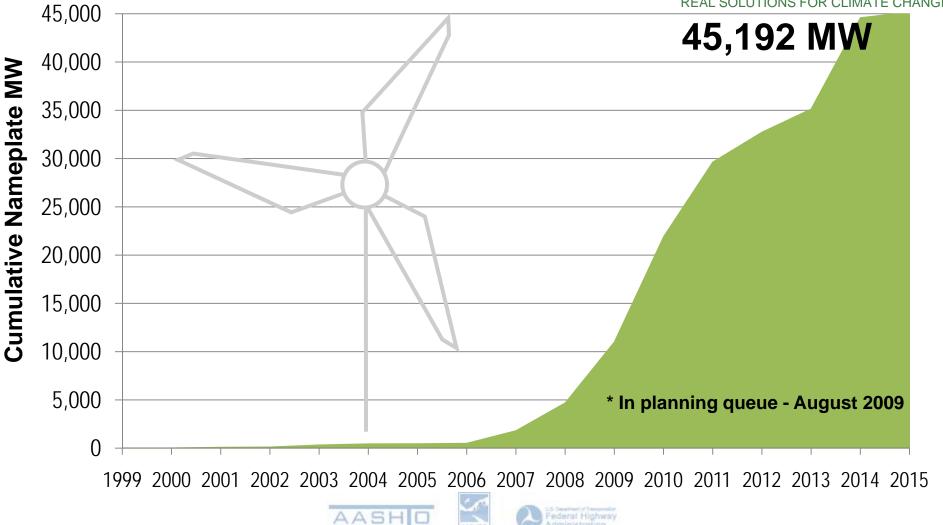
Annual cost/savings

Cost:

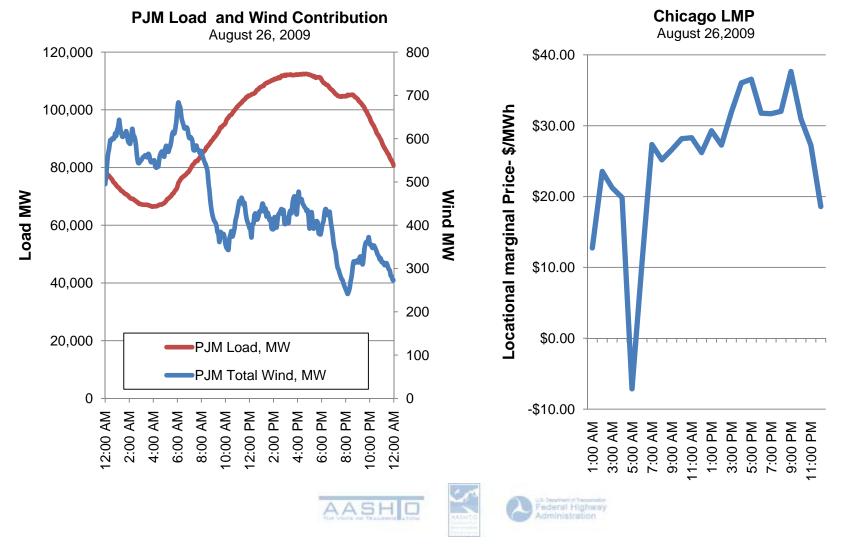
- Gasoline: 365 days * \$4.50 /day \$1650
- Electric: 365 days * \$0.60 /day = \$220

Savings:

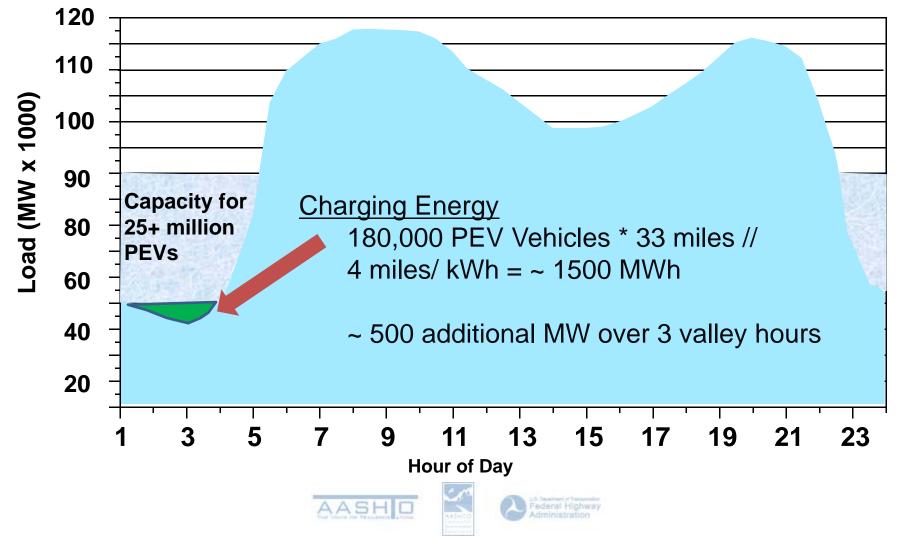
- ~ \$1400 annually per vehicle
- 180,000 vehicles (within PJM) = ~ \$250,000,000 annual

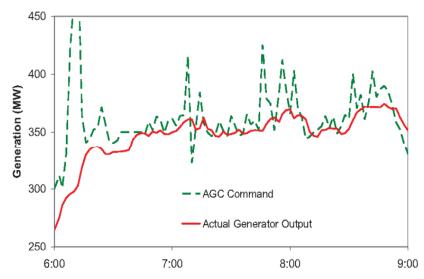


- ~ 33** Miles traveled per vehicle per day



** U.S. Bureau of **Transportation Statistics**

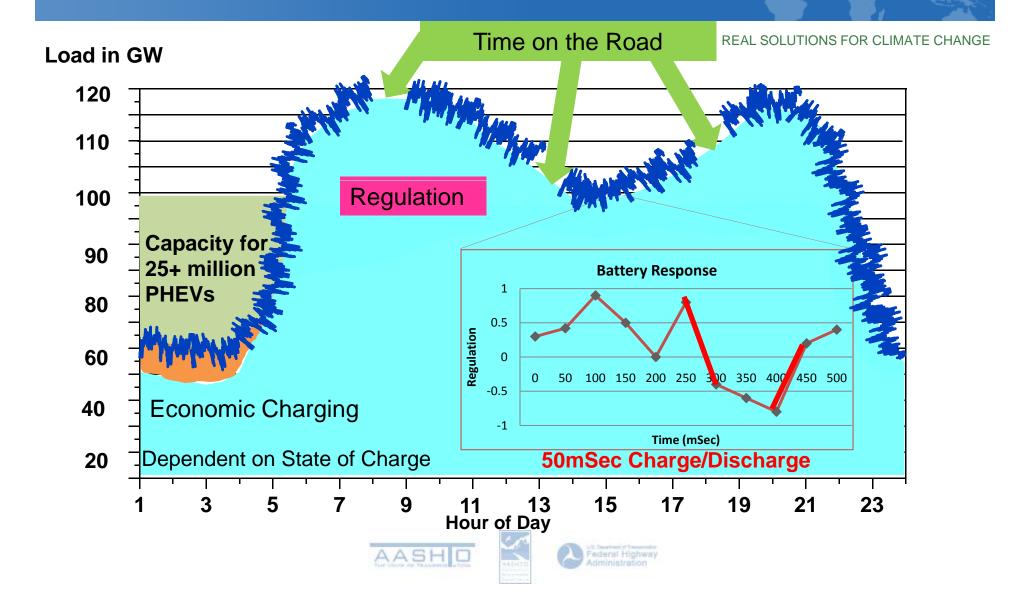

Wind Generation in PJM - Operational and Proposed


PJM Load and Wind Resources – August 26, 2009

Vehicle Charging Impact on PJM

Fast Regulation: Speed Matters..

Energy Storage (batteries / flywheels) accurately following a regulation command signal A fossil power plant following a regulation command signal


REAL SOLUTIONS FOR CLIMATE CHANGE

Rederal Highwar Administration

Grid Benefits – Regulation vs. Economic Dispatch

Vehicles w/ Vehicle-2-Grid Participating in the Regulation Market

Vehicles

- ~18% of U. S. Population is within the PJM territory
- 180,000 PEV Vehicles in the PJM Territory

V2G Equipped PEVs within PJM

- Assume 10% of Vehicles have V2G capability
- Bi-Directional Power (with inverter) 15 kW
- 18,000 vehicles * 15 kW = 270 Mw

Availability for Participating in Regulation

• Plugged In 12 hours each day (6PM – 6AM) > 365 days * 12 hours = 4380 hours/year

Payment for participation in the PJM Regulation Market

- PJM average historic price paid for regulation = \$35/MWh
- PJM Regulation price during valley load periods = \$28/MWh
- Per Vehicle: 4380 hrs * \$28 * .015 MW = **\$1800 annually**
- PJM Overall: 4380 hrs * 270 MW * \$28 = ~\$33,000,000 annually

Will Work for Fuel

MAGICC – PJM's PHEV Demonstration Project

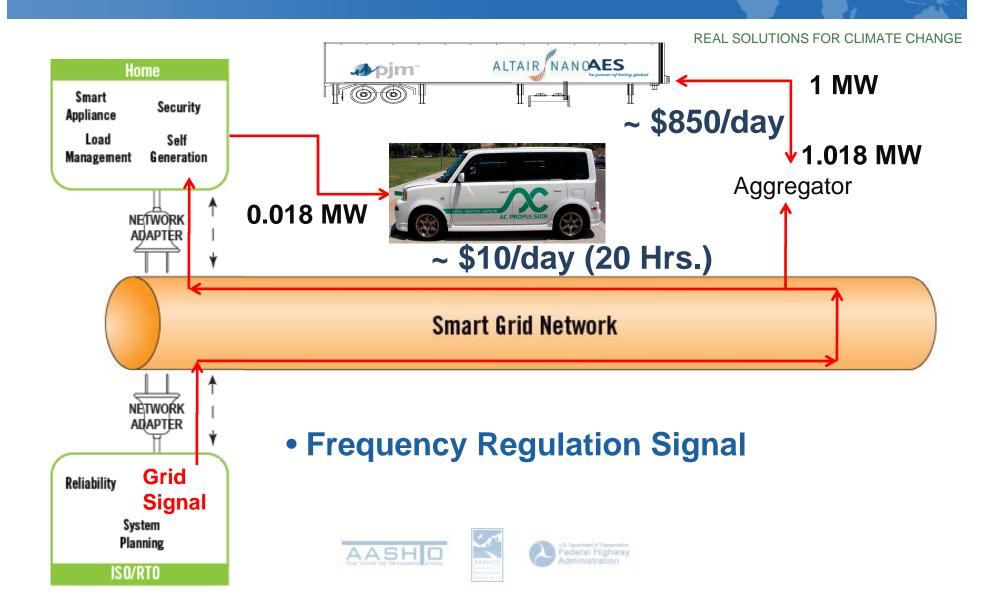
REAL SOLUTIONS FOR CLIMATE CHANGE

- Smart Meter allows car to roam
- Mid-Atlantic Grid Interactive Car Consortium (MAGICC)
- Over one year experience

AASH D

AES Grid-Scale Energy Storage System

REAL SOLUTIONS FOR CLIMATE CHANGE


Operational Details

- Altairnano, Inc Lithium Ion nano titanate battery
- Power: 1 MW for 15 minutes
- Usable Charge Range: 5% 99%
- Energy: 300 kWh
- Efficiency: 90% round trip

"Cash Back" for Storage

PHEVs: The Momentum Builds

Battery Electric Vehicles 2010 Coda Automotive Sedan 2010 Mitsubishi iMiEV BEV 2010 Nissan LEAF 2010 Ford Battery Electric Van 2010 Tesla Roadster Sport EV 2011 Peugeot Urban EV* 2011 Renault Kangoo Z.E. 2011 Renault Fluence Z.E. 2011 Tesla Model S 2011 BYD e6 Electric Vehicle **2011 Ford Battery Electric** Small Car 2011 Opel Ampera Extended Range BEV* 2012 Fiat 500 minicar

1902 Lohner-Porsche PHEV

2009 BWM MINI E

REAL SOLUTIONS FOR CLIMATE CHANGE

Battery Electric Vehicles 2012 Renault City Car* 2012 Renault Urban EV* 2012 Audi e-tron 2013 Volkswagen E-Up* 2016 Tesla EV

Extended Range Electric Vehicles 2010 Chevy Volt Extended Range

Plug-in Hybrid Vehicles

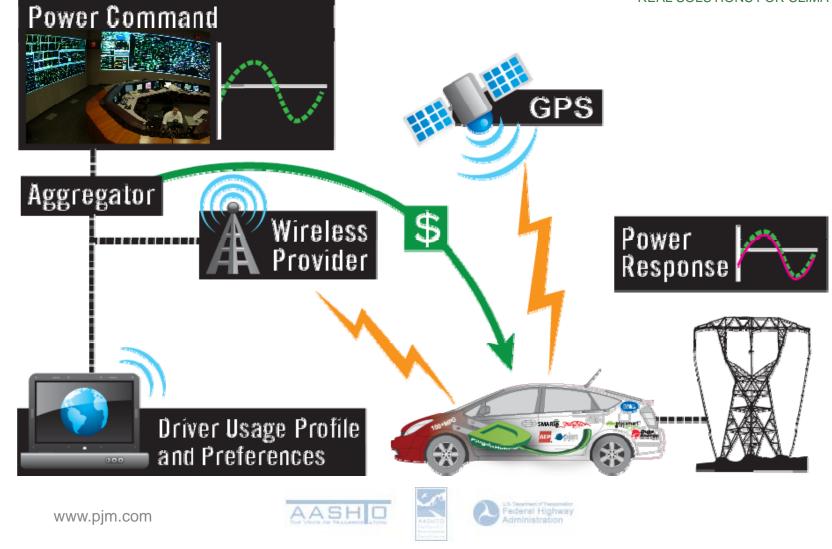
Fisker Karma S Plug-in Hybrid 2010 Toyota Plug-in Hybrid 2011 BYD F3DM Plug-in Hybrid 2012 Bright Automotive IDEA Plug-in Hybrid 2012 Ford Plug-in Hybrid 2012 Volvo Plug-in Hybrid

West Philly: EVX GT Plug-In Parallel Hybrid Electric Vehicle

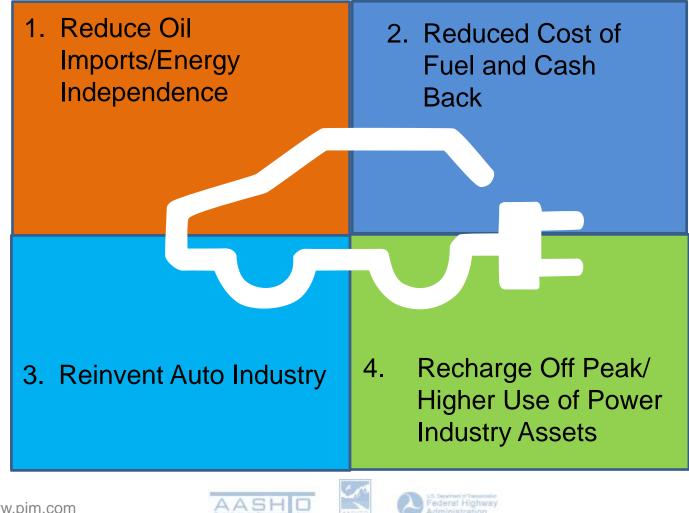
REAL SOLUTIONS FOR CLIMATE CHANGE

www.pjm.com

Smart@Car Current Research Activities



- Modeling of PHEVs and interactions with the grid
- PHEV Energy Management
- PHEV-Grid Connectivity Issues
- PHEV Fleet Studies


Smart@Car-a connection to the grid

REAL SOLUTIONS FOR CLIMATE CHANGE

PHEV- Win, Win, Win, Win

REAL SOLUTIONS FOR CLIMATE CHANGE

www.pjm.com

REAL SOLUTIONS FOR CLIMATE CHANGE

Transportation and Climate Change Resource Center

REAL SOLUTIONS FOR CLIMATE CHANGE

The West Coast Green Highway: I-5 Electric Highway Public/Private Partnership Project

March 17, 2011

Presented by:

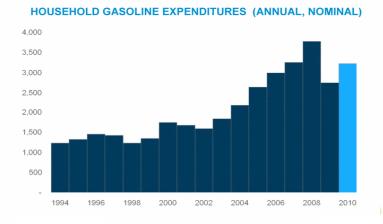
Jeff Doyle Director of Public/Private Partnerships Washington State Department of Transportation

The Transportation-Energy Imperative

REAL SOLUTIONS FOR CLIMATE CHANGE

U.S. oil dependence weakens our national security, threatens our economy, and degrades the environment.

National Security Costs of Oil Dependence:


 Securing global supply lines: \$67.5 - \$83 billion per year

Economic Costs of Oil Dependence:

 Every recession over past 35 years preceded by – or concurrent with – an oil price spike

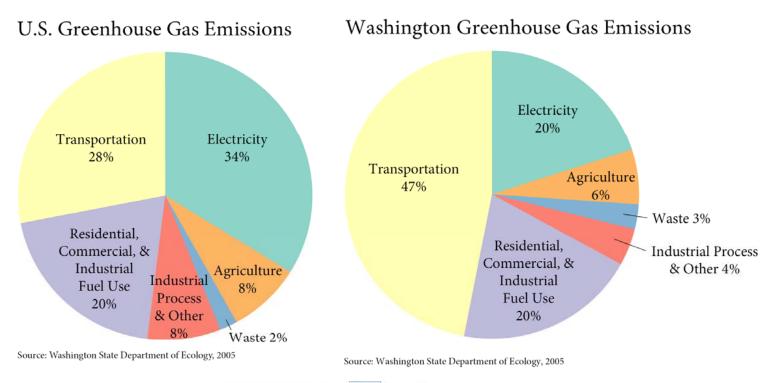
US Oil Dependence: Economic Costs

The Transportation-Energy Imperative

REAL SOLUTIONS FOR CLIMATE CHANGE

Environmental Costs of U.S. Oil Dependence:

- The transportation sector is the single largest *end-use emitter* of carbon dioxide in the U.S (34 percent of total CO2 emissions).
- To reach a 450 ppm Co2 stabilization target, by 2030 more than 60 percent of new vehicle sales must be electric drive.



Importance to State DOTs

GHG emissions from Washington State's transportation sector (47%) are nearly double the national figures

Federal Highway

Importance to State DOTs

REAL SOLUTIONS FOR CLIMATE CHANGE

2008 WSDOT Alternative Fuels Corridor Economic Feasibility Study:

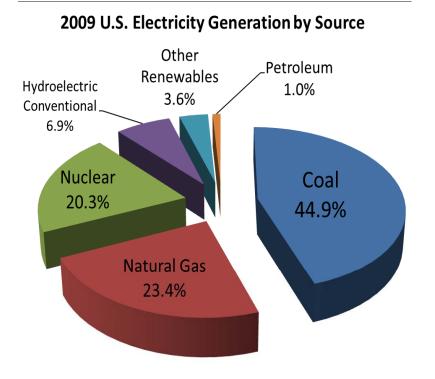
"The primary challenge to Alternative Fuels commercialization is how to build a market – simultaneously – for *new vehicle technologies*, *new fuels*, and *new infrastructure* to support them."

http://www.wsdot.wa.gov/Funding/Partners/AltFuelsCorridor.htm

REAL SOLUTIONS FOR CLIMATE CHANGE

Comparative Factors for Alternative Fueling Stations

	Land & Building	Fueling Equipment	Supply Chain
Gasoline	\$ 1,348,500	\$ 571,000	Established
Biodiesel	(Co-located?)	\$ 127,000*	Limitations
Hydrogen	(Co-located?)	\$ 318,000	Not Established
Electricity	Kiosk	\$ 50,000 - \$90,000**	Grid


* Number of pumps scaled for smaller initial demand

** Upper range includes utility connections and necessary upgrades

Fuel Source: Electric Power Grid

Advantages:

- Diverse and domestic
- Prices are stable
- Substantial spare capacity
- Network infrastructure already in place
- Electric miles cheaper than gas
- Electric miles are cleaner than gas
- 65 percent of present U.S. lightduty vehicles could be powered by existing off-peak generating capacity

REAL SOLUTIONS FOR CLIMATE CHANGE

REAL SOLUTIONS FOR CLIMATE CHANGE

Electric Vehicles: Battery Electric (BEV) vs. Plug-in Hybrid (PHEV)

Example: Nissan LEAF

- All Electric Range: 60 200 Miles, depending on battery size
- Level 1 (120 v), Level 2 (240 v) and optional Quick-Charging (480v)
- Target markets:
 - Urban Commuters
 - Second Car in Every Home
 - Eventually: all-purpose

Example: Chevy Volt

- Battery Electric plus ICE range extender
- 10-40 mi all-electric, 200-300 mi gas
- Level 1 (120v) and Level 2 (240v) Charging
- Target Market: all automotive applications

REAL SOLUTIONS FOR CLIMATE CHANGE

Nissan LEAF Range and Vehicle Efficiency

Speed and Driving Conditions	Outside Temp (F)	Accessories	Estimated Range (mi)	Vehicle Efficiency (mi/kWh)*
Cruising 38 mph	68 [°]	None	138	5.75
Fairly steady 24 mph City traffic	77 [°]	None	105	4.38
Steady 55 mph Highway	95 [°]	A/C on	70	2.91
Crawling 15 mph Stop-and-go	14 [°]	Heater on	62	2.60
Average 6 mph Heavy stop-and-go	86°	A/C on	47	1.96

Nissan LEAF has a 24 kWh battery Source: "Nissan Agrees - EV Mileage Will Vary; Leaf Tests Show 91-Mile Variation." Green Car Advisor – edmunds.com. June 15, 2010.

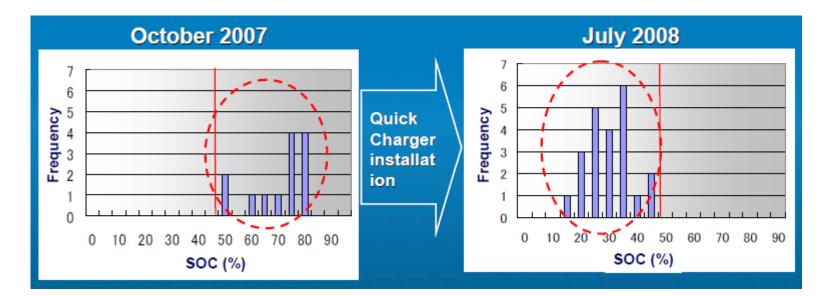
REAL SOLUTIONS FOR CLIMATE CHANGE

EV's are not fully utilized when "range anxiety" exists

Source: Tokyo Electric Power Company (TEPCO)

REAL SOLUTIONS FOR CLIMATE CHANGE

Strategically-located Quick Charge stations alleviate range anxiety


Source: Tokyo Electric Power Company (TEPCO)

REAL SOLUTIONS FOR CLIMATE CHANGE

Strategically-located Fast Charge stations alleviate range anxiety

Drivers returned EV's with > 50% SOC

Drivers returned EV's with < 50% SOC

Source: Tokyo Electric Power Company (TEPCO)

WSDOT's West Coast Green Highway

CALABLE OF OR BOICH

REAL SOLUTIONS FOR CLIMATE CHANGE

Project Purpose: Commercialization of Electric Vehicles

- Develop safety net of EV Quick-Charging stations throughout Interstate 5 Corridor – WSDOT's niche is outside Seattle-metro area
- Form public/private partnerships: with retailers to serve as station hosts, and with DBFOM consortium to develop, install and operate chargers
- Coordinate EV infrastructure development with other EV infrastructure planned for Seattle, Vancouver, BC, State of Oregon (ODOT), and eventually, California (missing link)
- WSDOT seed funding: \$1.32m US Department of Energy grant for petroleum reduction projects (through Washington State Commerce Dept.)

Public/Private Partnerships for EV Infrastructure

REAL SOLUTIONS FOR CLIMATE CHANGE

Two-Stage Deployment: Essential Charging and Corridor Completion

- **Funding:** \$1m federal grant for capital seed funding. Seeking DBFOM partner for maximum leverage (fixed price, variable scope).
- Target completion date: October 31, 2011.
- Focus: Ease of use for consumers. Turn-key for government sponsors.
- Minimum Number of DC Quick Charge Stations: 9 stations (7 on I-5, 2 along SR-2)

Supportive State Actions

Issues to Consider (from WSDOT's perspective):

- Capital efficiency of PPP (leverage) vs. strong government ownership role
- What happens after Year 3 (turn-back)?
- Long-term sustainable business model?

REAL SOLUTIONS FOR CLIMATE CHANGE

Opportunities and Resources for State DOTs and Municipalities

- Transportation Pooled Fund Study Opportunity: "Strategies and Best Practices for State Departments of Transportation to Support Commercialization of Electric Vehicles (EV) and Infrastructure" Solicitation #128http://www.pooledfund.org/projectdetails.asp?id=1289&status=1
- West Coast Green Highway (<u>www.westcoastgreenhighway.com</u>)
- The EVProject (<u>www.TheEVProject.com</u>)

West Coast Green Highway

REAL SOLUTIONS FOR CLIMATE CHANGE

I-5 Electric Highway Public/Private Partnership Project

For more information, contact: Jeff Doyle Director of Public/Private Partnerships WSDOT (360) 705-7023 DoyleJ@wsdot.wa.gov www.westcoastgreenhighway.com

REAL SOLUTIONS FOR CLIMATE CHANGE

For copies of these slides and webinar recording, go to AASHTO's website: http://environment.transportation.org/center/products_programs/climate_change_webinars.aspx

These materials will also be available on AASHTO's climate change website, where you can also find more information on climate change:

http://climatechange.transportation.org/webinars/

Thank you!

