impacts of Gimme Charge and Variability on Transportation Systems and infrastractures the scalif $c_{\rm const}$ study, there r

Task 3.2: Engineering Assessments of Climate Change Impacts and Adaptation Measures

LA Squake did toward da Sal'tant Baly Pured

The Engineering Assessment Process Used in the Gulf Coast Study, Phase 2

Jake Keller, WSP | Parsons Brinkerhoff

AASHTO Subcommittee on Design

Seattle, WA

September 2015

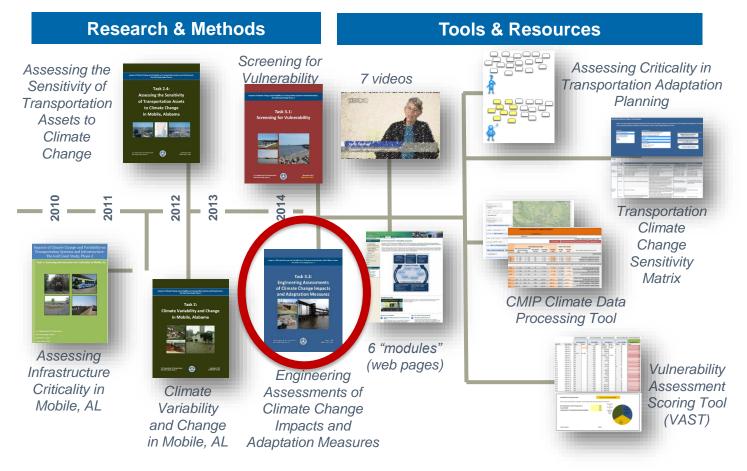
Overview

- Context
- Engineering Assessment
- Putting Studies into Practice

Why do this?

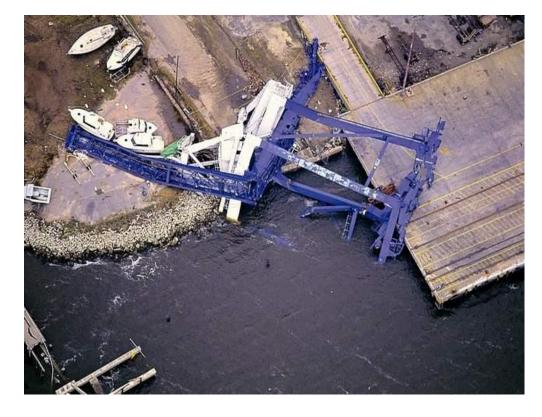
There is limited guidance on how to incorporate climate change projections into transportation engineering design.

Intended audience


Department of transportation (roadways and transit) officials
Planning and engineering staff
Risk managers
Metropolitan Planning
Organization staff and leadership
Private facilities
owners/operators (airports, marine ports, rail)
Political stakeholders needing technical support

Researching Vulnerability Implications for Engineers

Gulf Coast, Phase 2 Study Outcomes



PARSONS

CONTEXT

Undertaking Asset-Specific Engineering Assessments

Columbus Street Terminal in Charleston, SC After Hurricane Hugo

Goals

- Develop and test a systematic assessment process that:
 - Evaluates climate vulnerabilities
 - Develops and compares possible adaptation strategies
- 2. Explain and document Mobile-specific findings, including those that may apply in other locations.

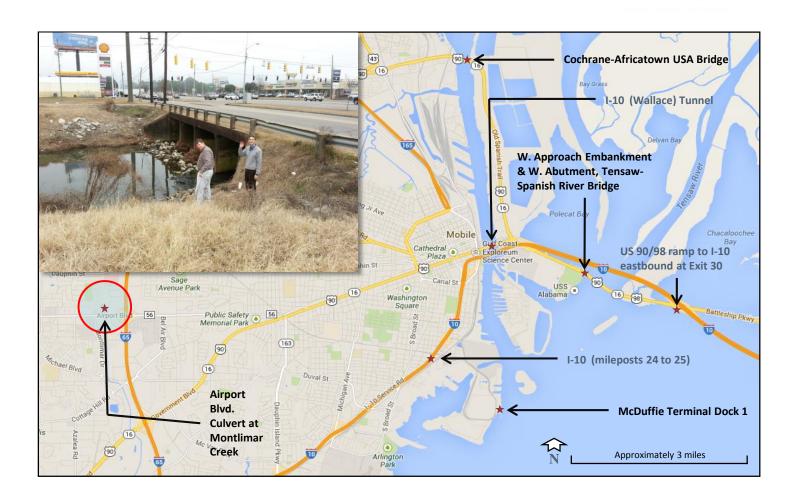
CONTEXT

Unique Features of Engineering Assessments

- Employs a systematic process for conducting engineering assessments specifically to address climate/weather risks
 - Establishes first 'guidance' of its kind
 - Yields asset-specific findings
 - Addresses multi-modal vulnerabilities
 - Addresses a range of climate hazards

Emphasizes relationship of climate information to design input data

- Demonstrates ability to 'localize' climate information for analysis
- Identifies and accommodates data needs for engineering assessment (e.g., temporal and spatial scales)
- Utilizes ranges of data, rather than singular input values
- Employs scenarios that acknowledge historic "design" storms as well as modeled future storms
 - Respects institutional knowledge and historic data
 - Enables scenario analysis

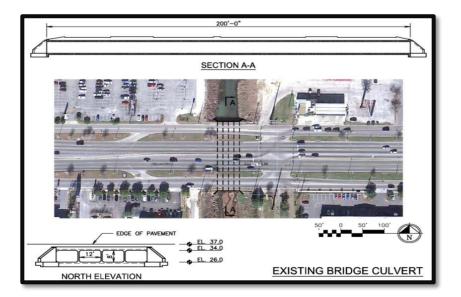

11-Step Process

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility
- 6. Develop adaptation option(s)
- 7. Assess performance of the adaptation option(s)
- 8. Conduct an economic analysis
- 9. Evaluate additional decision-making considerations
- 10.Select a course of action
- 11.Plan and conduct on-going activities

Case Study Locations


Asset Type / Climate Stressor Relationships Studied

Climate Stressor	Asset Type	Damage Mechanism	Asset Location
Precipitation	Culvert	Overtopping	Airport Blvd @ Montlimar Creek
Sea Level Rise	Bridge	Clearance	Cochrane Africatown USA Bridge
Sea Level Rise	Slope	Slope erosion	US 90/98 Tensaw Bridge
Storm Surge	Pier	Waves	McDuffie Coal Terminal, Dock 1
Storm Surge	Bridge	Waves/scour	US 90/98 Tensaw Bridge
Storm Surge	Bridge	Wave forces	Exit 30, EB Ramp I-10 Bayway Brdg
Storm Surge	Roadway	Flood/erosion	I-10, Between Mileposts 24 and 25
Storm Surge	Tunnel	Flood	Wallace Tunnel
Temperature	Pavement	Ruts, heaves	Generic
Temperature	Rail	Buckling	Generic
All	0&M	Wear/tear	Generic



Applying the 11-Step Process: Steps 1 - 3

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components

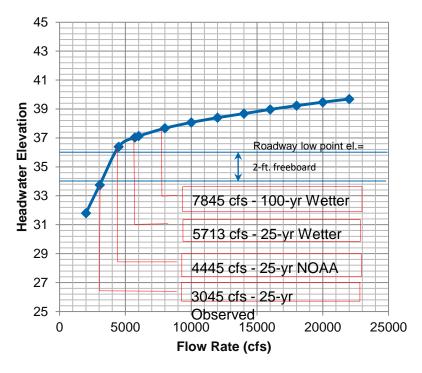
PARSONS BRINCKERI

Applying the 11 Step Process: Step 4

24-hour Storm Event Return Period	NOAA Average Baseline (inches)	"Wetter" Narrative			"Drier" Narrative		
		2010– 2039 (inches)	2040– 2069 (inches)	2070– 2099 (inches)	2010– 2039 (inches)	2040– 2069 (inches)	2070– 2099 (inches)
100-yr storm	14.9	21.0	20.4	22.3	12.6	14.2	13.4
50-yr storm	12.8	19.1	18.5	20.2	11.7	13.1	12.5
25-yr storm	10.9	15.7*	15.2*	16.7*	9.3*	10.4*	9.9*
20-yr storm	Unavailable	14.8	14.4	15.8	8.8	9.9	9.4
10-yr storm	8.6	12.9	12.5	13.7	7.9	8.8	8.4
5-yr storm	7.1	10.5	10.3	11.1	6.6	7.3	7.0
2-yr storm	5.3	6.7	6.7	7.1	4.4	4.8	4.6

24-Hour Precipitation Projections

* Asterisks denote interpolated values


- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes

Applying the 11 Step Process: Steps 5

Stage-Discharge Curve – Existing Culvert

4 (17) L.E. Baperne and A. Kamponiarion Restant Rightsony Scientific route

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility

Applying the 11 Step Process: Steps 6 - 8

Results of the Economic Analysis of Adaptation Options

Climate 2 4 Scenario Observed Observed Average (mean) of 1980-1980-"Wetter" Description of 2009 All 2009 "Drier" Scenario with with Narrative Narrative Scenarios Current Future Land-use Land-use Present Value \$1.7m \$1.7m \$1.7m \$1.7m \$1.7m of Costs Present Value \$9.7m \$83.3m \$26.1m \$11.5m \$8.2m of Benefits \$8.0m \$9.7m \$81.6m \$6.4m \$24.4m NPV BCR 5.6 6.6 47.9 4.7 15.0 Probability that BCR will 50% 44% 99% 41% N/A be over 1

Six12'x8' Cells Option

Four 21'x9' Cells Option

Present Value of Costs	\$2.5m	\$2.5m	\$2.5m	\$2.5m	\$2.5m
Present Value of Benefits	\$10.3m	\$11.8m	\$97.5m	\$8.9m	\$29.4m
NPV	\$7.8m	\$9.3m	\$95.0m	\$6.4m	\$26.9m
BCR	4.1	4.7	38.9	3.6	11.7
Probability that BCR will be over 1	38%	44%	99%	35%	N/A

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility
- 6. Develop adaptation option(s)
- 7. Assess performance of the adaptation option(s)
- 8. Conduct an economic analysis

Applying the 11 Step Process: Step 9

While the statistical analyses provide a starting point for making decisions, the numerical results by no means represent a final decision in the decision making process.

"The Triple Bottom Line"

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility
- 6. Develop adaptation option(s)
- 7. Assess performance of the adaptation option(s)
- 8. Conduct an economic analysis
- 9. Evaluate additional decisionmaking considerations

Applying the 11 Step Process: Steps 10 & 11

Source: National Weather Service

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility
- 6. Develop adaptation option(s)
- 7. Assess performance of the adaptation option(s)
- 8. Conduct an economic analysis
- 9. Evaluate additional decision-making considerations
- 10. Select a course of action
- 11. Plan and conduct on-going activities

How The Case Studies Can Help You

Summary highlights at beginning of case studies

Case Study Highlights

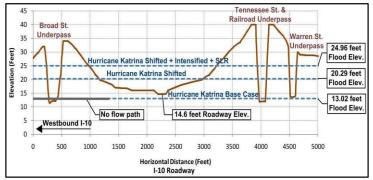
Purpose

Approach

•

Each case study includes:

- A detailed analysis that follows the 11 step process
- A description of the methodology used to conduct the assessment including:
 - Required data
 - Models and equations
 - Graphs and figures
 - Results
- Was the asset vulnerable?
 - What adaptation options are viable?
 - What are the key takeaways?
- Lessons learned


Key Lessons Learned

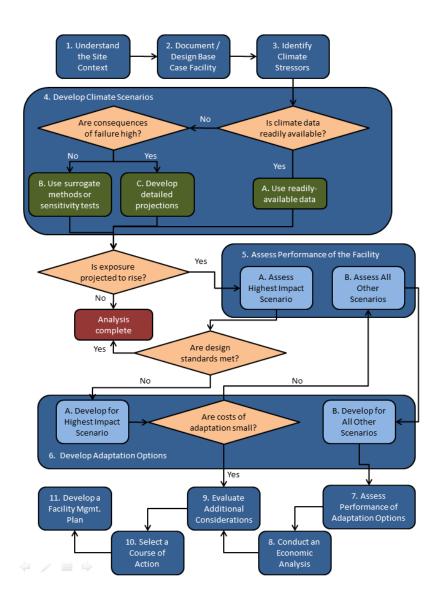
li Col Li Lippernisch of Pangostorion Potacon Algitoxoy Asiatica in radia a

Localized temperature projections helped assess the potential of heat kinks

Elevated roadway clearance under variations of Hurricane Katrina

- The 11-step Process is a useful and versatile framework
- Climate data can be localized
- Scenario planning is key to considering climate variables
- Benefit-cost analysis is helpful for finding the best performing adaptation option across scenarios

Other Interesting Findings


- Ship Navigation: Sea level rise could limit navigational clearances at bridges affecting transport even if the assets themselves are not vulnerable
- Systems Perspective: Riprap, willow matting, etc. work in unison to provide protection. Make sure these are evaluated as a system.
- Storm Surge: The "worst case" storm surge scenario does not always translate to more damage. Higher surges can completely inundate assets and protect them from the breaking waves.
- Selecting Adaptation Measures: Sometimes protecting a structure too much can actually result in more damage (e.g. tying down a bridge deck to its piers could cause substructure damage)
- Hurricanes: The Saffir-Simpson Hurricane scale, which is based on sustained wind speed, doesn't have a one-to-one relationship with magnitude or duration of storm surge

PUTTING STUDIES INTO PRACTICE

Additional Engineering Assessments Are Ongoing Nationwide

- Transportation Engineering Approaches to Climate Resiliency (TEACR) study
- Hurricane Sandy Followup, Vulnerability Assessment and Adaptation Analysis
- FHWA pilot studies
- Other state & local efforts

PARSONS BRINCKERHOF

PUTTING STUDIES INTO PRACTICE

Implementation Challenges

- Difficulty convincing agencies that adaptation is "pressing"
- Perception that there is too much uncertainty in future climate to warrant changes to design practices
- Higher up-front costs for
 - Undertaking the adaptation actions
 - Conducting the 11-Step process
- Risk-based analyses not traditionally used to drive engineering decisions
- Worry that assessments like these could expose agencies to criticism if assets fail
- Remaining knowledge gaps that can make these studies difficult

The Study Team

Client: United States Department of Transportation

Client's Managing Agency: Federal Highway Administration

- Robert Hyman
- Robert Kafalenos
- Brian Beucler

Engineering Analysis Consultant and Study Author:

Parsons Brinckerhoff

Climate and Planning (Prime) Consultant:

ICF International

The Consultant Study Team

Project Management:

• Jake Keller

Hydrology, hydraulics, bridge scour:

- Glenn Bottomley
- Lewis White
- Justin Lennon
- Eric Gupton

Storm surge modeling:

- Jerald Ramsden Bridge structures:
- Rex Gilley
- Benny Louie

Marine structures:

- Robert Snyder
- Blair Garcia

Economic & statistical analyses:

- Robert Kinghorn
- Lisa Bass

Climate data:

- Anne Choat
- Beth Rodehorst
- Cassandra Bhat
- Brenda Dix

Pavement analyses:

- Mary Erchul Rail analyses:
- Victor Solkol

Operation & maintenance

- Gary McVoy
- Tiffany Batac Geotechnical analyses:
- Ismail Karatas
- Planning:
- Michael Flood
- Chris Dorney

More Information?

Jake Keller National Technical Director of Civil Engineering Parsons Brinckerhoff Keller@PBWorld.com Cassandra Bhat Bhat, Cassandra Senior Associate Cassandra.Bhat@icfi.com

Project Web Site http://www.fhwa.dot.gov/environment/ climate_change/adaptation/ongoi ng_and_current_research/gulf_c oast_study/index.cfm OR: Search for "FHWA Gulf Coast Study"

