Maryland Adaptation and Vulnerability Assessment

Elizabeth Habic

Maryland State Highway Administration Office of Planning and Preliminary Engineering

July 8, 2015

Pilot Study Objectives

- Assess Vulnerability to SHA's Assets
- Develop Approaches to Address Current and Future Risk
- Provide Recommendations for Policy or Process Changes

Floating Debris Lodged in a Bridge during Flood Event at Seneca Creek in Germantown, MD Photo Source: (FEMA/Skolnik 2006)

"Improve Resiliency of Maryland's Transportation System"

<u>Key Step</u>

Identify Climate Stressors

Studied in Detail for Maryland

2050 & 2100 Sea Level Change

Eastern Shore Regional GIS Cooperative – Salisbury University

		2050		2100	
County	Tidal Station	MSL	MHHW	MSL	MHHW
Allegany	None	-	-	-	-
Anne Arundel	Annapolis	2.08	2.79	5.7	6.41
Baltimore	Baltimore	2.01	2.87	5.59	6.45
Baltimore City	Baltimore	2.01	2.87	5.59	6.45
	Solomons				
Calvert	Island	2.1	2.82	5.76	6.48
Caroline	Cambridge	2.11	3.13	5.78	6.8
Carroll	None	-	-	-	-
	Chesapeake				
Cecil	City	1.98	3.63	5.56	7.21
Charles	Washington DC	2.21	3.83	5.78	7.4
Dorchester	Cambridge	2.11	3.13	5.78	6.8
Frederick	None	-	-	-	-
Garrett	None	-	-	-	-
Harford	Baltimore	2.01	2.87	5.59	6.45
Howard	None	-	-	-	-
Kent	Annapolis	2.08	2.79	5.7	6.41
Montgomery	None	-	-	-	-
Prince					
Georges	Washington DC	2.21	3.83	5.78	7.4
Queen Annes	Annapolis	2.08	2.79	5.7	6.41
Somerset	Cambridge	2.11	3.13	5.78	6.8
	Solomons				
St. Mary's	Island	2.1	2.82	5.76	6.48
Talbot	Cambridge	2.11	3.13	5.78	6.8
Washington	None	-	-	-	-
Wicomico	Cambridge	2.11	3.13	5.78	6.8
Worcester	Ocean City	2.06	3.25	5.86	7.05

Methodology – USACE: Sea-Level Change Considerations for Civil Works Programs, October 2013

Permanent Inundation for Anne Arundel

Permanent Inundation Somerset County

<u>Key Step</u>

Assess Vulnerability

- Two Pilot Counties
- Initial Screening of Assets
- Tools Used
 - Hazard Vulnerability
 Index
 - VAST

Maryland Department of Transportation Climate Change Impact Zone Somerset County, MD

Initial Screening

- Climate Change Impact Zone Map Created Using GIS
- Eliminate assets at low to no risk prior to use of VAST
- Used SLOSH (Cat 3), 2100 MHHW, FEMA 100 year Floodplain, plus 50 ft buffer

Maryland Department of Transportation

Climate Change Impact Zone Anne Arundel, MD

Results of Screening

Assets	Anne Arundel County		Somerset County		
	Number of Assets	Evaluated in More Detail	Number of Assets	Evaluated in More Detail	
Bridges including large culverts	517	150	86	72	
Small culverts and conveyances	Culverts- 12,024 Conveyances- 8,601	Culverts- 1,174 Conveyances- 843	Culverts- 1153 Conveyances 1135	Culverts- 739 Conveyances 847	
Miles of roadway	2,554.28 miles	114.99 miles	503.92 miles	285.2 miles	

FHWA Vulnerability Assessment Scoring Tool Results

Vulnerability to Precipitation				
Structure		Evacuation		
ID	VAST SCOLE	Route		
134	3.1	Yes		
44	2.8	No		
30	2.8	No		
43	2.8	No		
45	2.8	No		
46	2.8	No		
1	2.6	No		
22	2.6	No		
95	2.5	Yes		

Hazard Vulnerability Index (HVI)

Risk =

 $(Evacuation \ Code * 0.5 + 1) * \left(\frac{(Flood \ Depth \ Code + 0.01)}{4}\right) * \left(\frac{0.7}{Functional \ Classification}\right)$

Evacuation	Code	Flood Depth (Feet)	Code	Value	SHA Functional Class
Nie	0			1	Interstate
NO	0	No Flood	0	2	Principal Arterial – Other Freeways and
Yes	1	0.05	1		Expressways
	0-0.5		3	Principal Arterial – Other	
		0.5 - 1	2	4	Minor Arterial
		1 - 2	3	5	Major Collector
			6	Minor Collector	
		>2	4	7	Local

HVI for Anne Arundel County

HVI for Somerset County

Vulnerable Areas at Risk

Results

- Anne Arundel County and Somerset County
 - Permanent Inundation
 - 2050 & 2100 Sea Level Change (USACE)
 - 2050 & 2100 Sea Level Change with 100 Year Storm Event (HAZUS-MH)
 - Storm Surge Considerations (Still Water)
 - Hazard Vulnerability Index (HVI)
 - Vulnerability Scores from VAST for bridges
 - Vulnerable Areas at Risk

Asset Management

- Incorporation of vulnerability results into organization's processes
 - Sea Level Rise mapping review on all projects
 - NEPA documentation for projects with identified vulnerable assets
 - Identify vulnerable assets in planning documents MOSAIC – Model of Sustainability and Integrated Corridors

allow SHA:

Inventory

- Define Corridor
- **Define Sections**
- Data Inputs
- Execute Model
- View Results
 - Map results
 - Interactive map display
 - Data package
 - PDF report
 - Input parameters table
 - File GDB
 - Corridor
 - Sections
 - Buffers
 - Processed GIS layers

Asset Management Environmental The MOSAIC tool will Economic Safety To take a data driven approach to the Highway Needs

- Analyze different project improvement alternatives to expedite the project planning process
- Organize data layers and develop outputs to assist in corridor selection

