NCHRP Panel 20-59, Surface Transportation Security and Resilience Research

2017 Resiliency Peer Exchange On Extreme Weather and Climate Impacts

Washington DC November 6-7, 2017

> Dave Fletcher GPC, Inc.

The Case for Resiliency to Extreme Weather Events

A Nation wide Concern

An Economic Imperative

A Leadership Requirement

Understanding Transportation Resilience

Understanding Transportation Resilience: A 2016-2018 Roadmap (2017)

Managing Catastrophic Transportation Emergencies. A Guide for Transportation Executives (2015)

Fundamental Capabilities of Effective AN Hazards Infrastructure Protection Positience, and Emergency Management for State Pote (2015)

Security 10¹: A Physical Primer for Transportation Againstes (2009) (Update in progress)

A Guide to Emergency Response Planning at State Transportation Agencies (2010) (Update in Progress)

What is resilience?

The ability to prepare and plan for, absorb, recover from, or more successfully adapt to adverse events. AASHTO

Resilience has many faces,

... many dimensions,

Dimension	Emergency	Design	Climate, Community and
	Management	Engineering	Societal Change
Mission	Prepare, Respond,	Resist, Adapt	Plan, Resist, Adapt,
	Recover		Relocate
Duration	Hours - Months	Years - Decades	Decades or longer
Potential	Extreme weather events	New loading &	Climate change impacts
Disruptions	Natural disasters	durability	Sea level rise
	Terrorist incidents	requirements	Mass migrations
Impact	Local - Regional	Local	Superregional - Global
Governance	Varies but Public Safety	Varies but State	All levels of government
	Agencies (PSA)	DOTs generally	
	generally provide	provide Project	
	Incident Command	Management	
Transportation	Support evacuation and	Engineering and	Funding
Agency Role	emergency access	construction	Planning
	activities	services	Policies and Standards

... and many choices

AASHTO 2016-2018 Resilience Research Program

20-59(54)	20-59(55)	20-117
• 3 Discussion Papers	• CEO Interviews	• Summit & Peer Exchange
 2020-2025 Resilience Research Roadmap 	 CEO Forums CEO Primer on Resilience 	 Resilience Guide Resilience Toolkit

NCHRP Synthesis 20-05/Topic 48-13 Resilience in Transportation Planning, Engineering, Management, Policy, and Administration

AASHTO 2016-2018 Resilience Research Program

Understanding Transportation Resilience: Discussion Papers

- What is the topic?
- Why is this issue critical or important to my agency or me?
- What do you want me to do?

Copies of the NCHRP resilience papers are available from Stephan Parker, TRB (saparker@nas.edu)

Understanding Transportation Resilience: An Environmental Perspective

- Heavy Rainfall & Runoff
- Flooding & Storm Surges
 - Heavy Snow & Ice Storms
- High Winds & Tornados
- Hurricanes & Cyclones
- Extreme Heat & Heat Waves
- Extreme Cold
 - Drought
- Wildfires

Lightning Rockfalls & Landslides Avalanches & Mu Earthquakes Sinkholes olcanoes & La Flows Space weather Solar Storms

Sea Level Rise & High Tides

21st Century Climate Trends

- Hotter
- Wetter
- Weirder

All Rights Reserved ©

Weather and Climate Risks

Role of Adaptive Strategies and Tactics in Reducing Impacts and Consequences

Source: National Climate Assessment

One-size won't fit all

- Major differences in
 - Population
 - Economic activity
 - Infrastructure investment
 - Resources

American Climate Refugees

Ten Essential Points

- 1. Resilience requires concentrated, sustained effort
- 2. Resilience has short-term, intermediate and long-range horizons
- 3. No state is immune
- 4. Heat waves, severe storms, and sea level rise pose the greatest threats, resulting in
- 5. Reduced asset performance, disruption of service, and increased costs to users and DOTs

November 2017

Ten Essential Points

- 6. Failures erode public trust, affect local economies, and generate political blowback
- Old disaster management approaches have been OBE'ed
- 8. One-size solutions don't fit all situations
- 9. Political, institutional, scientific, and technical barriers challenge leadership
- 10. DOTs cannot go it alone

Understanding Transportation Resilience: An Economic Perspective

Forget the political debate, forget the national debate, forget the debate about the science; think about what you're seeing right here. You've got to do something about it, and you've elected us to make decisions; you've elected me to make decisions, so I've got to do something about it.

Jake Day, Mayor, Salisbury, MD

Pretty grim already...

Disaster Type	Number of Events	CPI- Adjusted Losses (B\$)	Deaths
Storms or Flooding	152	\$899.8	5,328
Drought/Heat Waves	24	\$232.5	2,993
Wildfire	14	\$35.6	184
Winter Storm	14	\$42.7	1,013
Freeze	8	\$27.3	162
All Disasters	212	\$ 1,237.9	9,680

Increasing losses, due to

- Growing economy
- Rising construction costs
- More assets in vulnerable places (e.g., coastlines)
- More recovery funds to least prepared states
- Increasing disaster severity and frequency

NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters (1980-Jun 2017). https://www.ncdc.noaa.gov/billions/

FY 17 FHW A Emergency Relief Funding

Event Type	Number (%)	Allocation (M\$)		
Storms or Flooding	70 (80.5%)	\$579.7		
Wildfire	5 (5.7%)	\$19.8		
Rock fall/Rockslide	5 (5.7%)	\$14.3		
Bridge Damage	5 (5.7%)	\$25.3		
Other	2 (2.3%)	\$31.3		
All Events	87 (100%)	\$670.4		
31 states received allocations				

80.5% of events & 86.5% of \$ were related to storm or flooding damage

...gonna get worse

Hsiang, Kopp, Jina, Rising, et al. (

Estimating economic damage from climate change in the United States (2080-2099)

Economic Perspectives

- Community investment
- Services provider
- Economic stimulant
- Revenue source
- Major market
- Enabler and user of other critical in frastructures such as Communications, Energy, and Emergency Services

Economic Goals

- Improve accessibility, mobility, and connectivity, across all modes, for all users
- Minimize service disruptions
- Preserve asset value
- Protect critical infrastructure components
- Stimulate the economy
- Maintain interconnectedness with other critical infrastructures

Resilience Loss-Recovery

Model: Dr. Mary Ellen Hynes, DHS (2001); Blair Ross, ORNL; CARRI 2008 ©

5 Myths of Transportation Resilience

Myth 1: The transportation system is neither resilient nor reliable.

Myth 2: You can engineer your way to resilience.

Myth 3: DOTs have not invested in transportation resilience.

Myth 4: Resilience is just Operations "on steroids."

Myth 5: "Extreme Weather Resilience" is the new, politically correct term for "Climate Change."

Transportation Resilience Principles

- •One strategy is not sufficient
- •One size does not fit all
 - –Urban v. Rural contexts
 - -Sufficient v. Shoestring resources
 - -Life Critical v. Non-essential missions
- •One agency is not in charge
 - -Communicate
 - -Cooperate
 - -Collaborate
 - -Contract

A Leadership Requirement

	EMERGENCY	DESIGN	CLIMATE,	
	MANAGEMENT	ENGINEERING	COMMUNITY AND	
			SOCIETAL CHANGE	
FUNCTIONS	The assignments, tasks, and positions in a state DOT that are critical			
TUNCTIONS	to the performance of continued transportation activities			
	The infrastructure, equipment, resources, tools, vehicles, hardware,			
ASSETS	and facilities owned and operated by a state DOT			
	The relationships main	tained by a state DOT	with the private sector	
NETWORKS	and other branches	of government that	ensure continuity of	
	transportation activities			
SYSTEMS	The critical technology	y and applications, in	cluding data, used to	
	operate the DOT and the infrastructure and enable reliable network			
	communication			
PEOPLE	The necessary personnel needed by a state DOT to ensure resilient			
	transportation activities			

Thank You

Weather related disruptions and loss of service have real impacts on individuals and our economy. People can't get to work, get to school, and get to health care. People get sick. Businesses lose productivity. Families are stressed. People die. These are the reasons we geed to act. -NCHRP 20-59 Panel Member

The best time to plant a tree was 20 years ago; the second best time is now. – Traditional Proverb

Created by Freepik