Maryland Vulnerability Assessments

Maryland Department of Transportation State Highway Administration

November 6, 2017

Maryland Overview

Maryland:

- Atlantic Ocean and Chesapeake Bay
- 7,719 miles of shoreline
- Coastal in the East to Appalachian Mountains in the West
- Ranked 42nd in Area (12,407 sq. mi)
- Ranked 19th in Population (6,006,401)
- Average annual temperature 55.1°F
 - Summer average 80°F
 - Winter average 20°F
- Increases in temperature, precipitation intensity/frequency, and sea level change

Climate Change/Flood Reduction Groups

Maryland:

MD Commission on Climate Change Work Groups

Education, Communication, and Outreach

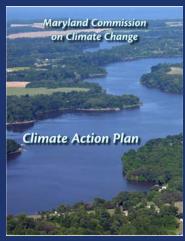
2015 Report on Education, Communication and Outreach

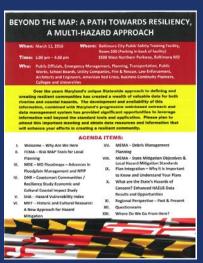
Greenhouse Gas Mitigation

2012 Greenhouse Gas Emissions Reduction Plan & 2015 Update

Adaptation and Response

Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate Change, Phase I: Sea-level rise and coastal storms


Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate Change,


Phase II: building societal, economic, and ecological resilience

Scientific and Technical

Updating MD's Sea-level Rise Projections Report - 2013

Silver Jackets – Baltimore - 2010 Coast Smart Council – 2014 Maryland Resiliency Partnership - 2015

House Bill 514 Maryland Commission on Climate Change

2-1305.

- (A) (1) EACH STATE AGENCY SHALL REVIEW ITS PLANNING, REGULATORY, AND FISCAL PROGRAMS TO IDENTIFY AND RECOMMEND ACTIONS TO MORE FULLY INTEGRATE THE CONSIDERATION OF MARYLAND'S GREENHOUSE GAS REDUCTION GOAL AND THE IMPACTS OF CLIMATE CHANGE.
 - (2) THE REVIEW SHALL INCLUDE THE CONSIDERATION OF:
 - (I) SEA LEVEL RISE;
 - (II) STORM SURGES AND FLOODING;
 - (III) INCREASED PRECIPITATION AND TEMPERATURE; AND
 - (IV) EXTREME WEATHER EVENTS.
- (B) EACH STATE AGENCY SHALL IDENTIFY AND RECOMMEND SPECIFIC POLICY, PLANNING, REGULATORY, AND FISCAL CHANGES TO EXISTING PROGRAMS THAT DO NOT CURRENTLY SUPPORT THE STATE'S GREENHOUSE GAS REDUCTION EFFORTS OR ADDRESS CLIMATE CHANGE.

House Bill 615 Coast Smart Council

- (B) (1) This subsection applies to State capital projects planned and built by units of State government that are partially or fully funded with State funds.
- (2) BEGINNING JULY 1, 2015, IF A STATE CAPITAL PROJECT INCLUDES THE CONSTRUCTION OF A STRUCTURE OR THE RECONSTRUCTION OF A STRUCTURE WITH SUBSTANTIAL DAMAGE, THE STRUCTURE SHALL BE CONSTRUCTED OR RECONSTRUCTED IN COMPLIANCE WITH SITING AND DESIGN CRITERIA ESTABLISHED UNDER SUBSECTION (C) OF THIS SECTION.
- (II) A REQUIREMENT THAT THE LOWEST FLOOR ELEVATION OF EACH STRUCTURE LOCATED WITHIN A SPECIAL FLOOD HAZARD AREA IS BUILT AT AN ELEVATION OF AT LEAST 2 FEET ABOVE THE BASE FLOOD ELEVATION; AND

2014 Climate Resiliency Pilot Study Objectives

- Assess Vulnerability to SHA's Assets
- Develop Approaches to Address
 Current and Future Risk
- Provide Recommendations for Policy or Process Changes

Floating Debris Lodged in a Bridge during Flood Event at Seneca Creek in Germantown, MD Photo Source: (FEMA/Skolnik 2006)

"Improve Resiliency of Maryland's Transportation System"

Pilot Study Climate Stressors

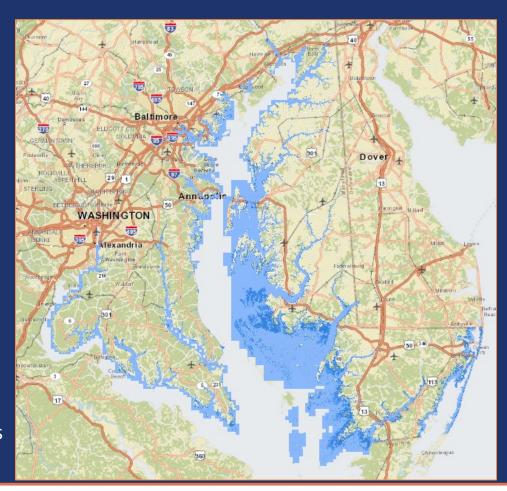
Sea Level Change

- USACE Procedures Established in Circular No. 1165-2-212 (2013)
- Newer LiDAR and Assign Nearest Tidal Station

Storm Surge

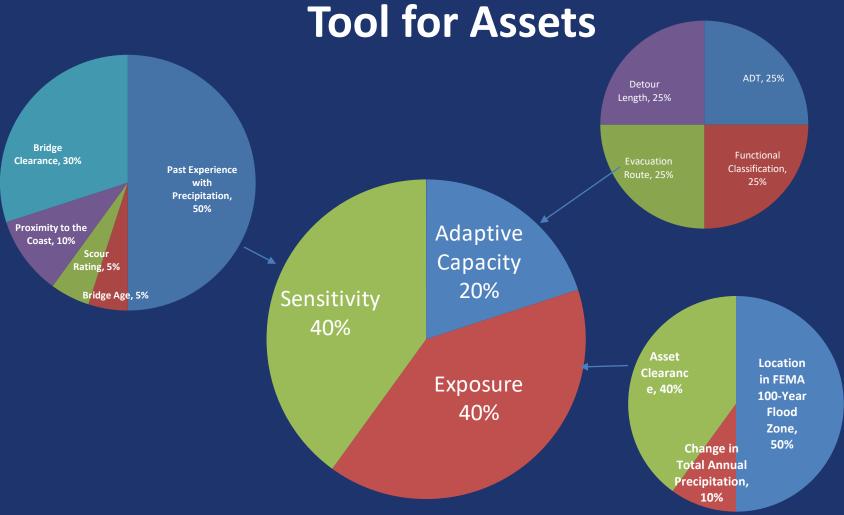
HAZUS-MH 2.1 (Category 3 Storm Used)
Stillwater Depth Grids Developed

Precipitation

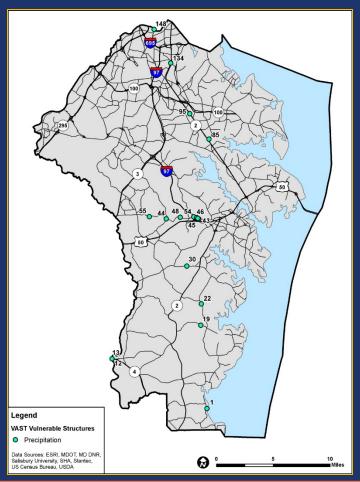

- Micro-scale Data Obtained from C-MIP
- Riverine Modeling in HAZUS-MH2.1 (future)

2050 & 2100 Mean Sea Level

Eastern Shore Regional GIS Cooperative – Salisbury University


					2100	
County	Tidal Station	MSL	MHHW	MSL	MHHW	
Allegany	None	-	-	-	-	
Anne Arundel	Annapolis	2.08	2.79	5.7	6.41	
Baltimore	Baltimore	2.01	2.87	5.59	6.45	
Baltimore City	Baltimore	2.01	2.87	5.59	6.45	
	Solomons					
Calvert	Island	2.1	2.82	5.76	6.48	
Caroline	Cambridge	2.11	3.13	5.78	6.8	
Carroll	None	-	-	-	-	
	Chesapeake					
Cecil	City	1.98	3.63	5.56	7.21	
Charles	Washington DC	2.21	3.83	5.78	7.4	
Dorchester	Cambridge	2.11	3.13	5.78	6.8	
Frederick	None	-	-	-	-	
Garrett	None	-	-	-	-	
Harford	Baltimore	2.01	2.87	5.59	6.45	
Howard	None	-	-	-	-	
Kent	Annapolis	2.08	2.79	5.7	6.41	
Montgomery	None	-	-	-	-	
Prince						
Georges	Washington DC	2.21	3.83	5.78	7.4	
Queen Annes	Annapolis	2.08	2.79	5.7	6.41	
Somerset	Cambridge	2.11	3.13	5.78	6.8	
	Solomons					
St. Mary's	Island	2.1	2.82	5.76	6.48	
Talbot	Cambridge	2.11	3.13	5.78	6.8	
Washington	None	-	-	-	-	
Wicomico	Cambridge	2.11	3.13	5.78	6.8	
Worcester	Ocean City	2.06	3.25	5.86	7.05	

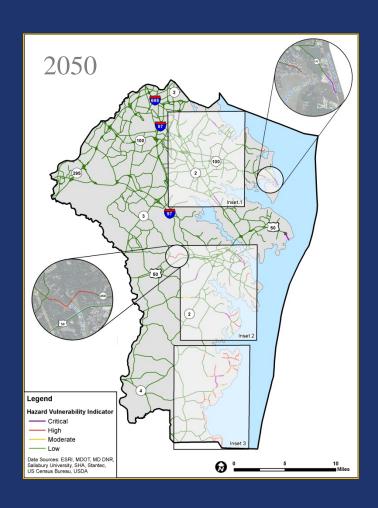
Methodology – USACE: Sea-Level Change Considerations for Civil Works Programs, October 2013

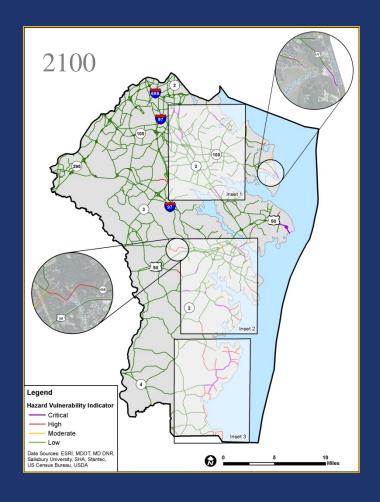


FHWA Vulnerability Assessment Scoring Tool Results

Vulnerability to Precipitation						
Structure ID	VAST Score	Evacuation Route				
134	3.1	Yes				
44	2.8	No				
30	2.8	No				
43	2.8	No				
45	2.8	No				
46	2.8	No				
1	2.6	No				
22	2.6	No				
95	2.5	Yes				

Hazard Vulnerability Index (HVI)


(Evacuation Code*0.5+1) + (Flood Depth Code+0.01)/4 + (0.7/Functional Classification)


Evacuation	Code
No	0
Yes	1

Flood Depth (Feet)	Code
No Flood	0
0 – 0.5	1
0.5 - 1	2
1 - 2	3
>2	4

Value	SHA Functional Class
1	Interstate
2	Principal Arterial – Other Freeways and Expressways
3	Principal Arterial – Other
4	Minor Arterial
5	Major Collector
6	Minor Collector
7	Local

HVI for Anne Arundel County

MDOT SHA Vulnerability Studies

Completed Coastal Vulnerability Study:

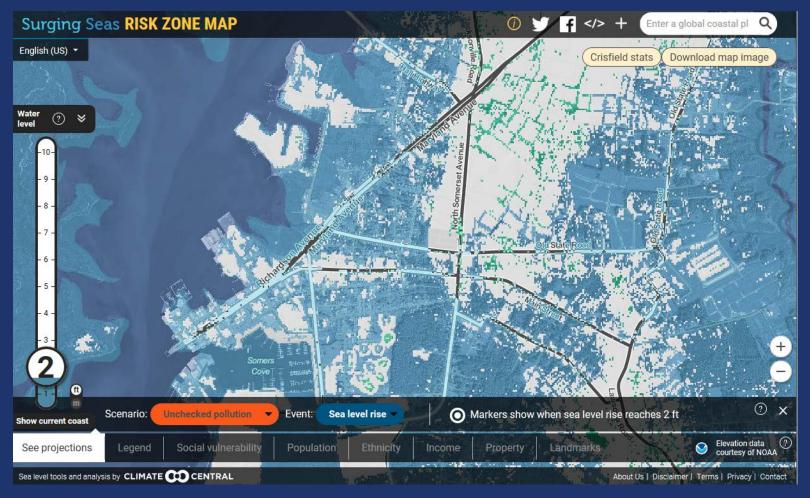
- Mapping of Sea Level
 Change for 2050 and 2100
- Mapping of modeled storm events (10%, 4%, 2%, 1% and 0.2%) for years 2015, 2050 and 2100
- Hazard Vulnerability Index (HVI) for State Roads
- Flood Depth for Local Roads

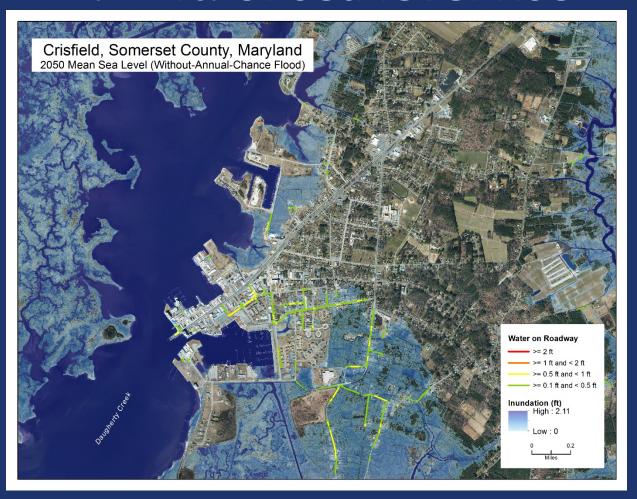
2050 & 2100 Sea Level Change

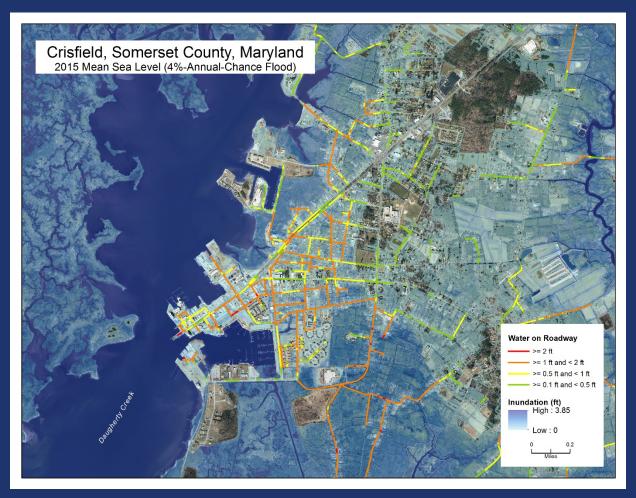
Eastern Shore Regional GIS Cooperative - Salisbury University

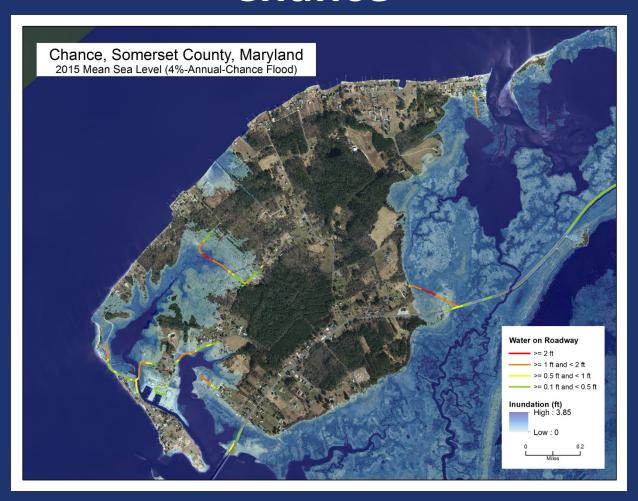
			2050	2100		
County	Tidal Station	MSL	MHHW	MSL	MHHW	
Allegany	None	-		-	-	
Anne Arundel	Annapolis	2.08	2.79	5.7	6.41	
Baltimore	Baltimore	2.01	2.87	5.59	6.45	
Baltimore City	Baltimore	2.01	2.87	5.59	6.45	
Calvert	Solomons Island	2.1	2.82	5.76	6.48	
Caroline	Cambridge	2.11	3.13	5.78	6.8	
Carroll	None			75		
Cecil	Chesapeake City	1.98	3.63	5.56	7.21	
Charles	Washington DC	2.21	3.83	5.78	7.4	
Dorchester	Cambridge	2.11	3.13	5.78	6.8	
Frederick	None	- 1	*	14	+1	
Garrett	None			25	40	
Harford	Baltimore	2.01	2.87	5.59	6.45	
Howard	None	14	- 60	(3)	-	
Kent	Annapolis	2.08	2.79	5.7	6.41	
Montgomery	None	- 1	- 5	- 1	-5	
Prince Georges	Washington DC	2.21	3.83	5.78	7.4	
Queen Annes	Annapolis	2.08	2.79	5.7	6.41	
Somerset	Cambridge	2.11	3.13	5.78	6.8	
St. Mary's	Solomons Island	2.1	2.82	5.76	6.48	
Talbot	Cambridge	2.11	3.13	5.78	6.8	
Washington	None	-	-	-	-	
Wicomico	Cambridge	2.11	3.13	5.78	6.8	
Worcester	Ocean City	2.06	3.25	5.86	7.05	

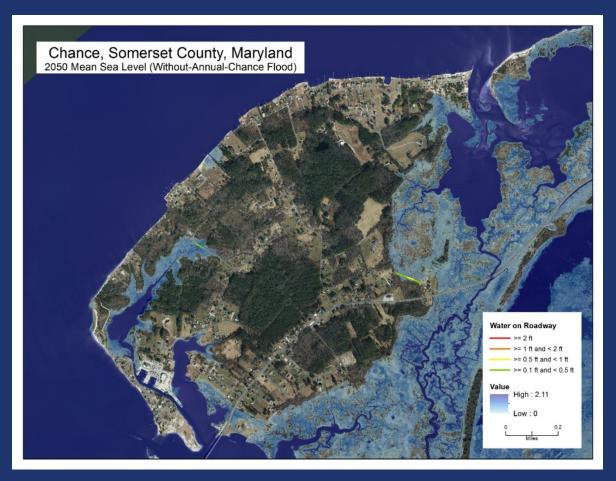
Methodology – USACE: Sea-Level Change Considerations for Civil Works Programs, October 2013


STATE HIGHWAY ADMINISTRATION


Crisfield 2050 2 ft. of sea level rise

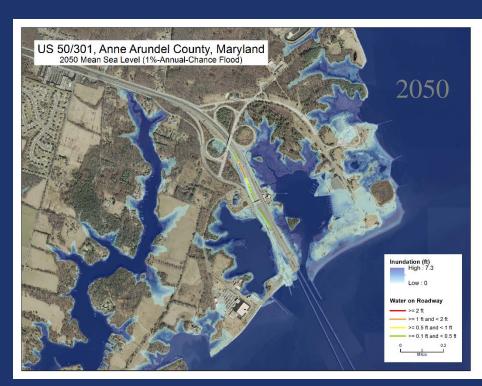

Crisfield 2050 2 ft. of sea level rise

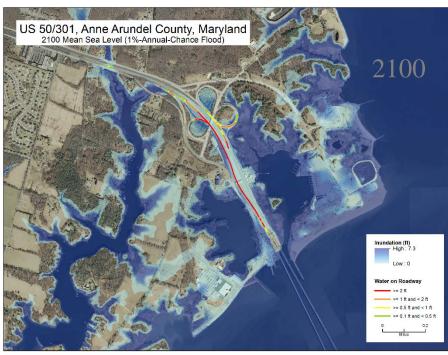

Crisfield 2050 2.11 ft. of sea level rise


25-Year Storm in 2015 Crisfield

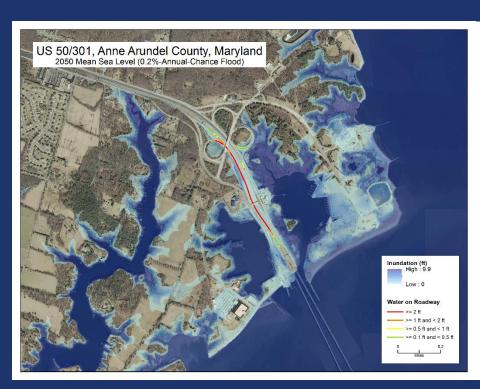
25-Year Storm in 2015 Chance

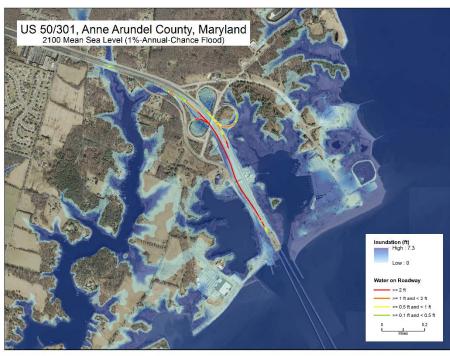
2050 Mean Sea Level Chance

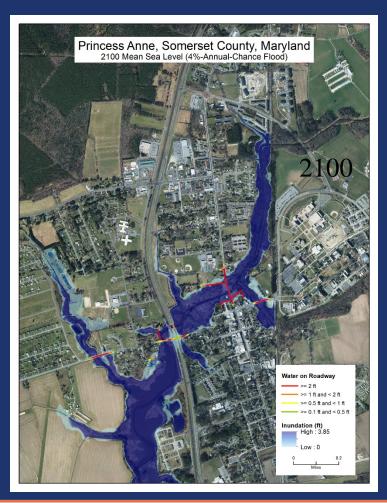

Somerset County Coastal Vulnerability

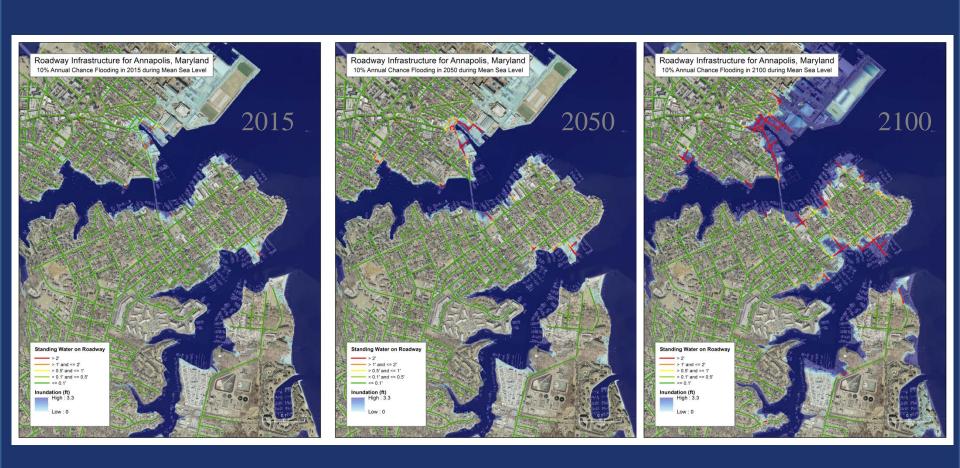

Somerset County Roadway Infrastructure in 2015 at Mean Sea Level								
Water on Roadway	Roadway (ft) (without annual)	% Total Roadway (without annual)	Roadway (ft) (4% annual)	% Total Roadway (4% annual)	Roadway (ft) (1% annual)	% Total Roadway (1% annual)		
> 0.1' and <= 0.5'	0	0.0%	117,776	4.4%	56,285	2.1%		
> 0.5' and <= 1.0'	0	0.0%	152,521	5.8%	107,631	4.1%		
> 1.0' and <= 2.0'	0	0.0%	263,432	10.0%	299,968	11.3%		
> 2.0'	0	0.0%	36,476	1.4%	284,381	10.7%		

Somerset County Roadway Infrastructure in 2050 at Mean Sea Level							
Water on Roadway	Roadway (ft) (without annual)	% Total Roadway (without annual)	Roadway (ft) (4% annual)	% Total Roadway (4% annual)	Roadway (ft) (1% annual)	% Total Roadway (1% annual)	
> 0.1' and <= 0.5'	72,967	2.8%	63,804	2.4%	80,418	3.0%	
> 0.5' and <= 1.0'	30,427	1.1%	69,226	2.6%	98,277	3.7%	
> 1.0' and <= 2.0'	3,911	0.1%	162,400	6.1%	152,728	5.8%	
> 2.0'	64	0.0%	619,603	23.4%	786,228	29.7%	

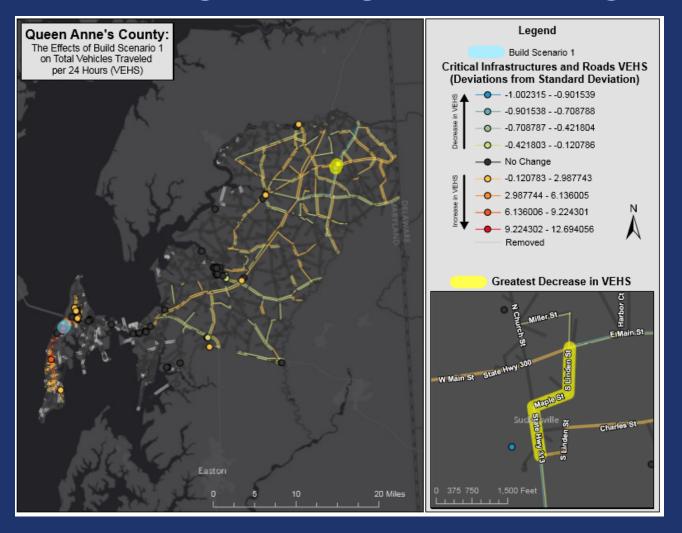

Somerset County Roadway Infrastructure in 2100 at Mean Sea Level							
Water on Roadway	Roadway (ft) (without annual)	% Total Roadway (without annual)	Roadway (ft) (4% annual)	% Total Roadway (4% annual)	Roadway (ft) (1% annual)	% Total Roadway (1% annual)	
> 0.1' and <= 0.5'	66,712	2.5%	20,968	0.8%	22,645	0.9%	
> 0.5' and <= 1.0'	69,548	2.6%	27,443	1.0%	22,453	0.8%	
> 1.0' and <= 2.0'	150,207	5.7%	83,041	3.1%	55,011	2.1%	
> 2.0'	638,127	24.1%	1,242,525	46.9%	1,323,710	50.0%	

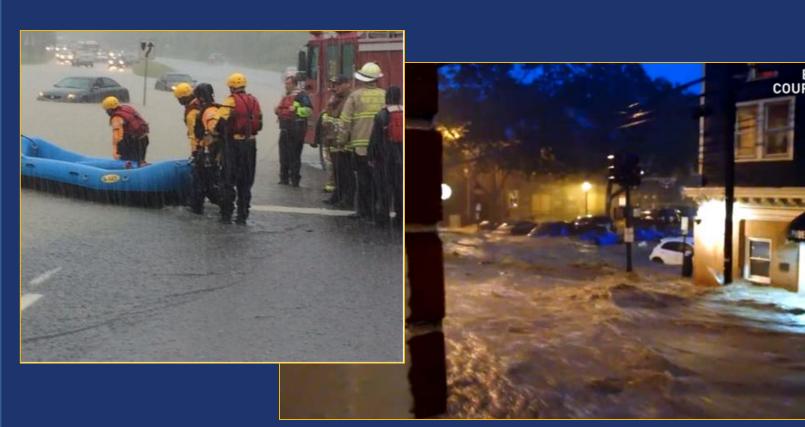

100-Year Storm in 2050 & 2100 Bay Bridge


500-Year Storm in 2050 & 100-Year Storm in 2100 at the Bay Bridge



25-Year Storm in 2050 & 2100 Princess Anne




10-Year Storm Inundation Mean Sea Level

Evaluation of High Scoring HVI Road Segments

Non-Coastal Vulnerability

Asset Management, Extreme Weather, and Proxy Indicators Pilot 2017 MDOT SHA Objectives

- Develop proxy indicators to identify and address extreme weather and climate-related risks to Maryland's critical assets
- Integrate climate-related risks and data into the TAMP processes
- Develop and modify existing lifecycle management plans to reflect climate-related data and risks
- Document the new processes

The purpose of MDOT SHA's proposed project for this pilot is to develop and integrate a repeatable framework for leveraging current and future extreme weather and climate change data with the transportation asset management processes currently in place

Questions

Elizabeth Habic
Office of Planning and Preliminary Engineering
ehabic@sha.state.md.us
410-545-8563

Climate Change Adaptation Plan with Detailed Vulnerability Assessment, October 2014

https://www.fhwa.dot.gov/environment/sustainability/resilience/pilots/2013-2015_pilots/maryland/final_report/index.cfm