

Traffic Noise Practitioners Summit

October 21-22, 2015 • Hotel Monaco • Baltimore, Maryland

Session 10 Construction Noise and Vibration and Pre-Construction Evaluation

> Facilitator: Cora Helm, Montana DOT

Participants:

- Cora Helm, Montana DOT
- Marilyn Jordahl-Larson, Minnesota DOT
- > Darlene Reiter, Bowlby & Associates, Inc. (Caltrans manual)
- Discussant: Mariano Berrios, Florida DOT

NOISE AND WILDLIFE

Challenges in Analysis, Assessment, Monitoring and Mitigation

Cora Helm

Affected Wildlife

T&E species
Grizzly bear
Sage Grouse
Bald & Golden Eagle

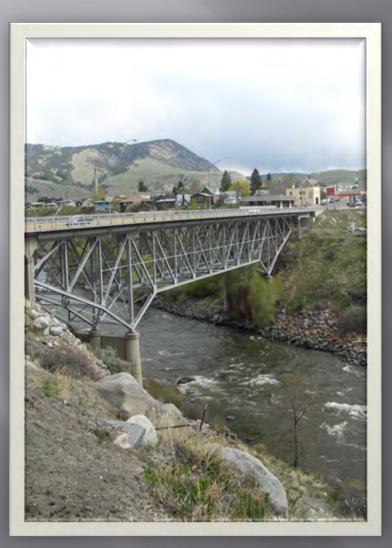
- Bull Trout
- Sturgeon
- Sprague's Pipit
- Least Tern

Biological Assessment

Threatened & Endangered Species
 Adversely Effect
 Potential Adverse Effect
 Formal Consultation 60 days
 Informal Consultation 30 days

Avoid, Minimize, Mitigate

Avoid – Bull Traut Ex


Avoid - use of timing restrict is

USFWS Preliminary Comment Letter - October 29, 201-, FWP Data)											
Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	overwintering										
	juvenile downstream migration										
	adult upstream migration										
USFWS Comment Letter - June 23, 2015											
Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	noise restriction (no pile driving unless sound attenuation measures are in place)										

Notice that USFWS timing restrictions do not align with habitat/behavior. MDT needs to drive pile in winter and pave in summer.

Minimize

 Upfront design to avoid in-stream work – like clear-spanning
 Building a work bridge without pile driving
 Use of drilled shafts instead of pile driving

Mitigate

- Bubble curtains
- Excel Calculator
- Use vibrating pile driver and finish with hammer for fewer strikes.

4	Stationary Fish					
5						
6	Fill in green cells: estimated sound levels and number of pile strikes per day, and transmisio			re measured, e	stimated	
7						
8		Acoustic Metric				
9		Peak	SEL	RMS	Effective Quie	
10	Measured single strike level (dB)	204	170	190	150	
11	Distance (m)	10	10	10		
12	Estimated number of strikes	500				
14	Estimated number of strikes	300				
14	Cumulative SEL at measured distance					
16	197					
17	131		Dictorco (r	n) to throchold		
18		Distance (m) to threshold Onset of Physical Injury Behavi				
19		Peak			RMS	
20		dB	Fish ≥ 2 g Fish < 2 g		dB	
21	Transmission loss constant (15 if unknown)	206	187	183	150	
22	15	7	46	86	4642	
23		-	1 40 1		1012	
24						
	** This calculation assumes that single strike	SELs < 150) dB do not accu	mulate to caus	e iniurv	
25						
26						
27	Notes (source for estimates, etc.)					

Photo: 2007, Illingworth & Rodkin, Compendium of Pile Driving Sound Data

MDT - Cora Helm

Better Science Needed

Behavior studies – what do the fish do? We already have timing restrictions for other T&E such as Eagles.

 USFWS is requiring all states to meet this noise criteria – based on studies in much different environments and on different species.

Night Construction Special Provision & Online Training

Noise Practitioners Summit October 21-22, 2015

Marilyn Jordahl Larson, P.E. MnDOT

We all have a stake in $A \oplus B$

Today's Presentation:

- Review of the Special Provision
- Online training highlights

Questions

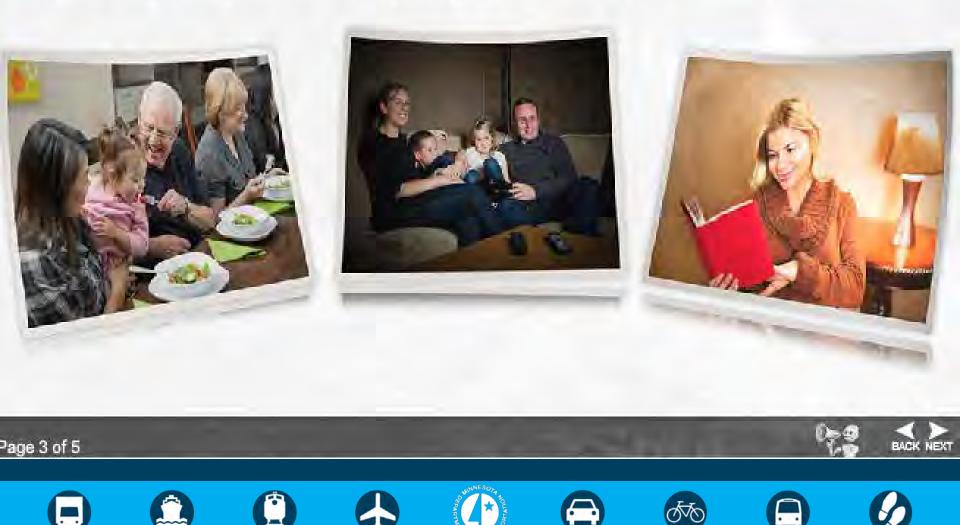
Overview

In this e-Learning session you will learn about the Night Construction provision including the Night Construction definition and the requirements for performing Night Construction activities.

The following topics will be discussed in this e-Learning.

- Topic 1 Introduction
- Topic 2 MnDOT Special Provision 1803
- Assessment

NEX



Night Construction Noise Impacts

To maintain a good relationship with the public and ensure public support for highway projects among the local communities, it is critical that the owner and the contractors make every effort to minimize the adverse effects of Night Construction. This can be accomplished through relatively minor measures being taken by the contractor and the owner.

Night Construction Defined

In order to get a clear understanding of Night Construction, let's take a look at the definition.

Click on the highlighted area for more information. Click again to minimize.

Night Construction shall be defined as construction between the hours of 6:00 p.m. to 7:00 a.m. where the work will occur within 500 feet of any sensitive areas such as hospitals, homes for the aging, private residences, apartments, businesses, and hotels/motels.

The work location is important. The contractor shall identify work within 500 feet of any sensitive area(s). It is important for the contractors to identify the appropriate hours for which a project will take place. Night Construction is not defined by the lightness or darkness of the sky. This is important because construction activities in the summer months could occur at 6:00 p.m. when it is still light outside or 7:00 a.m. when the sun is rising.

COMPANY OF STREET, STR THE OWNER WATER OF TAXABLE PARTY. and local \$10 instant mount is a my next will live in our NAMES OF TAXABLE PARTY. as internet in the second state summer in California of local for Contactual I common minimum in an 'No Negative

I IN ADDRESS AND IN ADDRESS

name of processions, or printing of these

and the second difference on the second distance of the formula second se

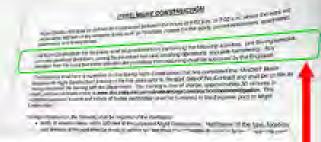
Click the Next button to continue.

Page 2 of 10

of the local division in which the local division is not the

of strength from the strength of the local division

Topic 2 - MnDOT Special Provision


BACK

Typical Prohibited Activities

Special Provision 1803 Night Construction defines prohibited activities unless otherwise specifically allowed in the contract.

Be sure to refer to the specific prohibited activities contained in the Night Construction special provision for each project(s).

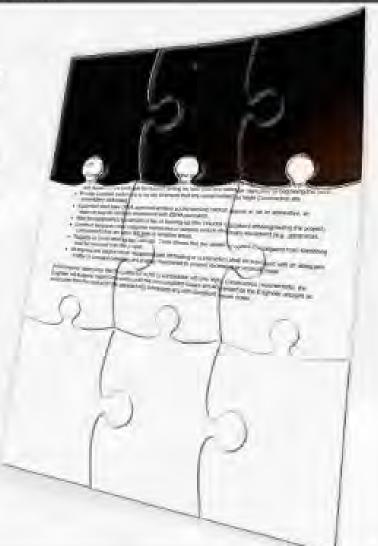
Distances, timeframes and prohibited activities may change depending on your contract for a specific project. Be sure to refer to the specific requiren

on other designment of a strength of the

Prohibit For Night Construction, the contractor shall be prohibited from performing the following activities: pile driving/removal, concrete pavement demolition, sawing for pavement removal, crushing operations, and jack-hammering. Any deviation from the hours that these activities are prohibited from occurring must be approved by the Engineer.

Click on the text to read the contractor requirements.

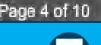
The strength in


Topic 2 - MnDOT Special Provision

Requirements and Procedures

Notify all sensitive areas within 500 feet of the proposed Night Construction. Notification of the type, location, and duration of the work shall be made in writing no later than five calendar days prior to beginning the work.

- Sensitive areas may include:
 - · Hospitals
 - Homes for the aging
 - · Private residences
 - · Apartments
 - Businesses
 - Hotels/motels


Click on the next puzzle piece.

BACH

Topic 2 - MnDOT Special Provision

Additional Measures for Mitigating Noise During Night Construction

Contractors should take additional steps, such as the following, to mitigate noise during night construction.

- · Keep staging areas away from sensitive areas.
- Use rubber gaskets on the boxes of tailgates to reduce/eliminate loud noises from slamming tailgates.
- · Use belly dumps in lieu of end dumps.
- · Turn off equipment during non use.

Page 9 of 10

MnDOT Noise Mitigation for Night Construction Training: www.dot.state.mn.us/onlinelearning/construction/noisemitigation

Questions?

Thank You!

Caltrans *Transportation and Construction Vibration*

Developed over almost two decades - based on early work by Rudy Hendriks

Transportation and Construction Vibration Guidance Manual

September 2013

California Department of Transportation Division of Environmental Analysis Environmental Engineering Hazardous Waste, Air, Noise, Paleontology Office

© 2013 California Department of Transportatio

Contributors

- Bruce Rymer, Caltrans: contract technical manager
- David M. Buehler, P.E., ICF International: primary author and editor
- Wesley L. Bender, Wesley L. Bender & Associates: blasting
- Harjodh Gill, PhD., Shor Acoustical Consultants: construction vibration impact assessment and reduction
- Rudy Hendriks, Caltrans: technical review
- Jim Andrews, P.E., Caltrans: technical review
- James Nelson, PhD, P.E., Wilson-Ihrig Associates: technical review
- Chris Small, ICF International: editing and document preparation

Chapter 1 Introduction And Background1						
Chapter 2 Basic Physics of Ground Vibration						
Chapter 3 Vibration Sources9						
Chapter 4 Vibration Propagation134.1Vibration Wave Types134.2Vibration Propagation Models14						
Chapter 5 Vibration Receivers19						
Chapter 6 Vibration Criteria216.1People216.2Structures236.3Equipment26						
Chapter 7 Vibration Prediction and Screening Assessment for						
Construction Equipment						
7.1.2 Vibration Amplitudes Produced by Vibratory Pile Drivers						
Breakers						
Equipment						
Chapter 8 Methods for Reducing Vibration41						
8.1 Wave Barriers 41 8.2 Vibration Reduction for Impact Pile Drivers 42 8.3 Vibration Reduction for Hydraulic Breakers 44 8.4 Vibration Reduction Measures for Other 44						
Keduction Measures for Other Construction Equipment						

Contents, 1 of 3

8.6 Vib	ration Reduction for Train Operations	46
9 1 Vib	edures for Addressing Vibration Issues ration Concerns about Existing Activities and	47
	erations	47
	ration Concerns about Planned Activities and	
	erations	48
9.2.1	Step 1. Identify Potential Problem Areas	
	Surrounding the Project Site	
9.2.2	Step 2. Determine Conditions That Exist	
	Before Construction Begins	
9.2.3	Step 3. Inform the Public about the Project	
	and Potential Construction-Related	
	Consequences	53
9.2.4	Step 4. Schedule Work to Reduce Adverse	
	Effects	54
9.2.5	Step 5. Design Construction Activities to	
	Minimize Vibration	55
9.2.6	Step 6. Notify Nearby Residents and Property	
	Owners That Vibration-Generating Activity Is	
	Imminent	55
9.2.7	Step 7. Monitor and Record Vibration Effects	
	from Construction	55
9.2.8	Step 8. Respond to and Investigate	
	Complaints	
9.3 Vib	ration Study Reports	
Obersten 40 Millerstien Me		50
10.1 Vibration Me	asurement and Instrumentation	
10.1 VID	ration measurement Equipment	
Chapter 11 Vibration an	d Air Overpressure from Blasting	61
11.1 Intr	oduction to Blasting	61
11.1.1	Blasting Terminology	61
11.1.2	Blasting Process	
	ration and Air Overpressure Concerns that Arise	
	n Blasting	67
	thods of Predicting Blast Vibration and Air	
Ove	erpressures	
11.3.1	•	
11.3.2		
11.4 Crit	teria for Assessing Human Response to Blasting	
	Potential for Structural Damage	74
11.4.1	Human Response	
11.4.2	Effect of Blast Vibration on Materials and	
	Structures	75
11.4.3	Government-Published Vibration Limits	
11.4.4		
11.4.5	Government-Published Air Överpressure	
	Limits	80

Contents, 2 of 3

California Department of Transportation	Contents
11.5 Procedures for Mitigating Blast Vibration and Air	
Overpressures from Construction Blasting	81
11.5.1 Step 1. Identify Potential Problem Areas	
Surrounding the Project Site	
11.5.2 Step 2. Determine the Conditions That Exist	
Before Construction Begins	83
11.5.3 Step 3. Inform the Public about the Project	
and Potential Blasting-Related Consequences	84
11.5.4 Step 4. Schedule the Work to Reduce	
Adverse Effects	85
11.5.5 Step 5. Design the Blast to Minimize Vibration	
and Air Overpressure	86
11.5.6 Step 6. Use the Blast Signals to Notify Nearby	
Residents That Blasting Is Imminent	89
11.5.7 Step 7. Monitor and Record the Vibration and	
Air Overpressure Effects of the Blast	89
11.5.8 Step 8. Respond to and Investigate	
Complaints	
11.6 Blasting Specifications	90
Chanter 12 Deferences and Additional Deading	01
Chapter 12 References and Additional Reading	91
Appendix A. Technical Advisory TAV-02-01-R9601	
Appendix B. Sample Vibration screening procedure and Vibration Complaint Form	n
Appendix C. Sample Vibration Specifications	
Appendix D. Sample Blasting Vibration Specifications	

Contents, 3 of 3

Upcoming Publications

- New Technical Guidance for the Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish: A 500+ page reference for assisting biologists and engineers in assessing hydroacoustic impacts of pile driving work on fish for the permitting process
- Update to a 2007 Caltrans reference: Technical Guidance for the Assessment and Mitigation of the Effects of Traffic Noise and Road Construction Noise on Birds
- New Technical Guidance for the Assessment and Mitigation of the Effects of Traffic Noise and Road Construction Noise on Bats
- Expected by end of November, downloadable and available to the other DOTs

Traffic Noise Practitioners Summit

October 21-22, 2015 • Hotel Monaco • Baltimore, Maryland

Session 10 - Questions

- Hanf, MI: Are there any planned revisions or updates to the Construction Noise Handbook?
- Burcham, MO: Has noise impacts on Section 6(f) land that has hunting as one of its uses been an issue?
- Use of TNM for biological noise purposes. Is anyone using TNM results in impact determinations to animals? Is the Aweighting and height a problem?

Traffic Noise Practitioners Summit

October 21-22, 2015 • Hotel Monaco • Baltimore, Maryland

Session 10 - Questions

- Moch, ND: NDDOT has dealt with terrestrial and aquatic species in regard to noise analysis requirements. Sharptail grouse leks were identified within ½ mile of project and noise analysis proved a negligible increase in noise levels. Pallid Sturgeon (endangered species) noise monitoring was required for bridge pier placement as commitment in Environmental Assessment.
- NDDOT would like to hear ideas for modeling this in project development.
- Alcala, OH: What triggers the requirement for construction noise and vibration studies?

Traffic Noise Practitioners Summit

October 21-22, 2015 • Hotel Monaco • Baltimore, Maryland

Session 10 - Questions

- Newvine, OR: What kind of effort are DOTs giving to review of vibration impact documents?
- Vibration Effects on structures, including historic and sensitive manufacturing
- Construction noise:
 - Level of effort for analysis
 - Discussion in reports
 - > Types of mitigation
 - Implementation of mitigation measures