The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

The Near-Road Pooled Fund Study

Monday, September 30, 2019 2:00-3:30 PM ET

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Purpose

Provide an overview of the research done through the transportation pooled fund (TPF) to understand near-road air quality data, improve near-road air quality evaluations, implement effective mitigation, and more effectively respond to stakeholder information requests

Learning Objectives

At the end of this webinar, you will be able to:

- Identify common technical methods used to assess nearroad air quality
- Describe the need to assess near-road air quality
- Summarize the efforts of the transportation pooled fund (TPF) study

National Assessment of Near-Road (NR) Air Quality: Requirements, Trends, and Analysis Insights

Work Sponsored by the Near-Road Air Quality Transportation Pooled Fund (TPF)

Steven Brown,¹ Ken Craig,¹ Douglas Eisinger,¹ Karin Landsberg,² Anondo Mukherjee,¹ Lynn Baringer,¹ Shih Ying Chang,¹ Jennifer DeWinter,¹ Michael McCarthy,¹ ShihMing Huang¹

> ¹Sonoma Technology, Inc. ²Washington State Department of Transportation

For: U.S. Transportation Research Board (TRB) Webinar Series

Organized by the TRB Standing Committee on Transportation and Air Quality Available via TRB's website: http://www.trb.org/ElectronicSessions/RecordedSessions.aspx

TRANSPORTATION POOLED FUND

Home A Open Sol Related L	bout TPF icitations 9 inks Email	How to Participate Search Forms Su I Alerts	iccess Stories
Home > Stu	dy Detail View		Tools
Study	Detail Vi	iew	Contacts
Near Roa	d Air Quality	Research	FAQs
Near Itoa		yntesearch	Glossary
General In	formation		
Study	Status:	Contract/Other	
Number:	Cleared by	Number:	
TPF-5	FHWA		
(284)			
Lead Age	ncy:	Last Updated:	
Washingto	n State	Jul 12, 2013	

Webinar: September 30, 2019

Transportation Pooled Fund

- Five-year program
- Sponsors
 - Arizona DOT
- Ohio DOT

– Caltrans

– Texas DOT

Virginia DOT

- Colorado DOT
- FHWA
- Research STI
- Washington State DOT, lead agency

Objective: "Improve the state of knowledge regarding, and the ability of state DOT staff to address, near-road air quality issues."

TRANSPORTATION POOLED FUND

Home | About TPF | How to Participate Open Solicitations | Search | Forms | Success Stories Related Links | Email Alerts

Home > Study Detail View

Study Detail View Near Road Air Quality Research

Contacts FAQs Glossary

Tools

General Information

Study	Status:	Contract/Other
Number:	Cleared by	Number:
TPF-5	FHWA	
(284)		
Lead Age Washingto	n cy: n State	Last Updated: Jul 12, 2013

Outline

- 1. Introduction: Pooled fund, motivation, EPA requirements
- 2. Data Overview: CO and NO_2 are not current problems; $PM_{2.5}$ is high at some sites
- 3. Near-Road PM_{2.5}: Increment varies across near-road (NR) sites
- 4. Trends: Starting to emerge, seem to be headed in right direction
- 5. Monitored Compared to Modeled: Disconnect between measured and modeled concentrations
- 6. Conclusions

Material Drawn From (Partial List)

RANSPORTATION

ATMOSPHERIC

RANSPORTATION

Brown et al., 2019: 2014-2016 data.

Conditions Leading to Elevated PM_{2.5} at Near-Road Monitoring Sites: Case Studies in Denver and Indianapolis

Seagram et al., 2019: 2016 data.

National Assessment of Near-Road Air Quality in 2016: Multi-Year Pollutant Trends and Estimation of Near-Road PM_{2.5} Increment

DeWinter et al., 2018: 2014 and 2015 data.

A National-Scale Review of Air Pollutant Concentrations Measured in the U.S. Near-Road Monitoring Network During 2014 and 2015

Reid et al., 2016: 2006-2035 modeled emissions.

Emissions Modeling with MOVES and EMFAC to Assess the Potential for a Transportation Project to Create Particulate Matter Hot Spots

Karner, Eisinger, and Niemeier, 2010: 1978-2008 global data. Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data

Motivation: NR Air Pollution

- CO, black carbon, NO₂, other pollutants are typically higher near major roadways
- HEI: traffic-related air pollution exposure linked to children's asthma (and other concerns)
- In 2010, EPA mandated air pollution monitoring near major roadways

Motivation: Required NR Analyses

SEPA United States Environmental Protection

March 10, 2006

Environmental **Protection Agency**

40 CFR Part 93

PM_{2.5} and PM₁₀ Hot-Spot Analyses in Project-Level Transportation Conformity Determinations for the New PM2.5 and Existing PM₁₀ National Ambient Air Quality Standards; Final Rule

Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM₁₀ Nonattainment and Maintenance Areas

Federal mandates: near-road "hot-spot" analyses

- Carbon monoxide (CO)
- Particulate matter $(PM_{25} \text{ and } PM_{10})$

Introduction

Motivation: EPA-Mandated NR Monitoring, 2014+

- NO₂ 68 locations
- CO 53 locations
- PM_{2.5} 42 locations

Site locations in 2016. Source: Seagram et al., 2019, *Transportation Research Record*

Data Overview

Multiple Years of Data Show NR CO and NO₂ Are Well Below NAAQS

2016 NO₂

2016 CO

8-hour mean CO (ppm)

From Seagram et al., 2019, *Transportation Research Record*

These findings are for research purposes; do not use for determining attainment status.

Data Overview

<u>24-hr</u>: several sites > 35; Ontario 98th % > 35 μ g/m³

<u>Annual</u>: many sites near annual mean threshold, <u>Ontario, Long Beach</u> above it

2016 PM_{2.5} – Most Sites Below NAAQS

NAAQS: 24-hr 35 μg/m³ Annual 12 μg/m³

From Seagram et al., 2019, Transportation Research Record

These findings are for research purposes; do not use for determining attainment status.

Factors to Weigh When Evaluating Increments (partial list)

- Distance to roadway
- Traffic volume
- Fleet mix (truck %)
- Meteorological conditions
- Background site selection

Near-road sites by distance to roadway (m); 2017 data

PM_{2.5} Increment: National Summary

Background Site Selection: We Assessed Multiple Options/Analysis Approaches

2015 example results for Denver, distance/correlation (DC), in ug/m3

3.0/3.1/3.9

- 25/50/100 km:
- r² of 0.5/0.75/0.90: 3.0/3.1/2.8
- Ave. all six DC methods: increment = 3.2

(DeWinter et al., 2018, Table 2)

NR PM_{2.5} Increment Results, 2016

- Mean: 0.6 1.1 μg/m³
- Most: 0.0 1.5 µg/m³
- Increments vary widely among sites
- Findings before consideration of confounding factors (next slides)

Multiple methods used:
Inverse distance weighting (IDW)
Single upwind site (WD)
Combination of nearby sites (Distance/Correlation, or DC)

(Seagram et al., 2019, Fig. 6)

2016 PM_{2.5} Increment Data: Minimal Correlation vs. Distance or Traffic Many Sites Have Confounding Factors (e.g., Ontario, St. Louis)

Lines show where relationships are significant, based on p-value ≤ 0.05

Source: Seagram et al., 2019, Fig. 7

Ontario (Southern California) State Route 60

AADT: 215,000 FE-AADT: 625,736

Estimated $PM_{2.5}$ increment: ~2.0 to 3.0 µg/m³ (2016)

Google Earth view

Looking West Looking East Exit Street View Exit Street View Sound Wall **NR Monitor NR Monitor** 101 NUF

St. Louis, I-64

AADT: 159,326 FE-AADT: 360,077

Estimated $PM_{2.5}$ increment: ~0.0 to 0.5 µg/m³ (2016)

Google Earth view

Looking North

For scale of depressed roadway, note height of jogger

2017 PM_{2.5} Increment Data: Results <u>After Removing Sites</u> With Confounding Factors

On-Road Emissions and NR PM_{2.5} Generally Trending Down

PM_{2.5} emissions, hypothetical freeway, 125,000 AADT, 8% of which are HDDVs (Reid et al., 2016, Fig. 3, MOVES data).

These findings are for research purposes and should not be used for determining attainment status.

On-Road Emissions and NR PM_{2.5} Generally Trending Down

PM_{2.5} emissions, hypothetical freeway, 125,000 AADT, 8% of which are HDDVs (Reid et al., 2016, Fig. 3, MOVES data).

Data for 8 areas; may not represent all sites.

PM_{2.5} annual mean 24-hr concentrations, NR sites, areas with three years of data (Seagram et al., 2019, Fig. 5).

These findings are for research purposes and should not be used for determining attainment status.

Comparing Monitored and Modeled PM_{2.5} Concentrations

Indianapolis (looking south)

Providence (looking north)

Monitored Compared to Modeled (Preliminary Findings)

Site	AQS ID	Site Name	Road Type	Hourly Traffic Volume	Hourly Traffic Speed	Hourly Vehicle Characterization	PM _{2.5} Data	CO Data	Collocated Meteorological Data	Other Major Issues Identified ¹	Interest Site for 2015 Modeling?	Original 7 Sites from Table 1 of STI Site Selection Report
1	44-007-0030	Providence, RI (I-95) [0030]	Ι	х	х	х	Н	х		х	yes	Х
2	18-097-0087	Indianapolis, IN (I-70) [0087]	S	Dec	Dec	Dec	D3	x	x	x	?	
3	41-067-0005	Portland, OR (I-5) [0005]	S	х	х	х	D3	х	х	х	?	х
4	06-037-4008	Long Beach, CA (I-710) [4008]	S	Sep-Dec	Sep-Dec	Sep-Dec	D1			х	?	
3	06-071-0027	Ontario, CA (SR-60) [0027]	S	х	х	х	D1			x	?	х
5	29-510-0094	St. Louis, MO (I-64) [0094]	S	x	х	х	Н	x	x	х	?	х
7	08-031-0027	Denver, CO (I-25) [0027]	S	Х	х		Н	х	х		no	х
8	25-025-0044	Boston, MA (I-93) [0044]	S	x	x	х	Н	x		x	no	х
9	51-760-0025	Richmond, VA (I-95) [0025]	Ι	x	x		Н	x		x	no	х
10	06-085-0006	San Jose, CA (US 101) [0006]	Ι	x	x	х	Н	x		x	no	
11	06-001-0012	Oakland, CA (I-880) [0012]	S	Sep			Н	x		х	no	
12	04-013-4019	Tempe, AZ (I-10) [4019]	Ι	x			Н	x	x		no	
13	04-013-4020	Phoenix, AZ (I-10) [4020]	S	x			Q4	x	x		no	
14	39-061-0048	Cincinnati, OH (I-75) [0048]	S	Oct-Dec	Oct-Dec	Oct-Dec		x			no	
15	39-035-0073	Cleveland, OH (I-271) [0073]	S	х	х	х		x	x		no	
16	48-453-1068	Austin, TX (I-35) [1068]	S	х					x		no	
17	48-439-1053	Fort Worth, TX (I-20) [1053]	S	Jan-Mar	Jan-Mar		D3	x	x	х	no	
18	48-201-1052	Houston, TX (I-610) [1052]	S	Nov-Dec			D3	х	x		no	

Early Site Selection Work

green cells designate potential issues for a site orange cells designate critical issues for a site red cells designate fatal flaws for a site

For Road Type, "S" indicates freeway segment, and "I" indicates proximity to freeway interchange

Technical Approach (The Modeling Chain)

Monitored Compared to Modeled (Preliminary Findings)

Indianapolis (2016)

- NR site
- Links
- Permanent I-70 traffic monitor (951315)
- Temporary traffic monitor

PM_{2.5} Monitors Near-road site (red star) Background sites (green dots)

Indianapolis Traffic Data Summary http://indot.ms2soft.com

Parameter	Description
Year of monitor data used	2016 for freeway links 2014-2016 for certain local roads (scaled to 2016)
Interstate monitors	1 permanent monitor (I-70, 0.9 from AQ monitor) 12 temporary monitors for I-70, I-65 (including ramps)
Arterial and local road monitors	36 temporary monitors for developing local roadway data
Speed data	Vehicle counts by speed bin (varying bins by monitor)
Class data	Vehicle counts by FHWA vehicle class

- Roadway links are mapped to monitors.
- Some links use data synthesized from multiple monitors.
- If speed or class information is missing, distributions are generated from local MOVES inputs and/or defaults.

Indianapolis Emissions Summary

Includes entire modeling domain (20 miles of roads).

Process	Average Daily PM _{2.5} Emissions (pounds/day)	% of Total
Road dust (AP-42)	37	53
Running exhaust	28	40
Brake wear	2	5
Tire wear	1	2
Total	70	100

Modeled fraction of non-exhaust $PM_{2.5}$ (60%) is high compared to recent near-road measurements in Toronto (Hwy. 401, ~400,000 AADT), where ~35% of traffic-related $PM_{2.5}$ was from non-exhaust components.

Source: Jeong et al., "Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions." *Atmospheric Environment* 198 (2019) 55–69.

Modeled (AERMOD) 24-hr PM_{2.5} Results Compared to Monitored Values (Indianapolis)

Modeled results are:

- Much higher (by factor of 3-4) than the monitored near-road increment
- Not as sensitive to wind direction compared to the measured increments

More details available from TRB talk: Craig et al., 2019

Indianapolis Model Sensitivity Comparisons

Simulation	Description
Base Case	AERMOD with hourly traffic and near-road meteorology
Alt Met	AERMOD with airport meteorology
Alt Traffic	AERMOD with time-aggregated traffic data
Cal3	CAL3QHCR with hourly traffic and near-road meteorology

More details available from TRB talk: Craig et al., 2019

n=152 days for AERMOD cases; n=40 days for CAL3QHCR case

Monitored Compared to Modeled (Preliminary Findings)

Providence (2015-2016)

traffic monitor

Providence 2015 Activities, Events (a Complicated Story)

Providence PM_{2.5} Emissions Summary

Includes entire modeling domain (9 miles of roads).

Process	Average Daily PM _{2.5} Emissions (pounds/day)	% of Total
Road dust (AP-42)	24	44
Running exhaust	26	49
Brake wear	3	5
Tire wear	1	2
Total	54	100

Modeled fraction of non-exhaust $PM_{2.5}$ (51%) is high compared to recent near-road measurements in Toronto (Hwy. 401, ~400,000 AADT), where ~35% of traffic-related $PM_{2.5}$ was from non-exhaust components.

Source: Jeong et al., "Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions." *Atmospheric Environment* 198 (2019) 55–69.

Modeled (AERMOD) 24-hr PM_{2.5} Results Compared to Monitored Values (Providence)

(n=382 days)

Modeled results are:

- Much higher (by factor of six) than the monitored near-road increment
- Not as sensitive to wind direction compared to the measured increments

32

Indianapolis vs. Providence Model Results

Indianapolis

Near-Road PM_{2.5} Modeling Synthesis

Parameter	Indianapolis (2016)	Providence ^a (2015/2016)	Riverside I-15 Conformity ^b (2035)
Measured Increment (µg/m ³)	0.9 ± 0.6	1.4 ± 0.2	
AERMOD Average Increment (µg/m ³)	3.7	8.8	6.3
AERMOD Peak 24-hr Increment (µg/m ³)	7.3	22.0	16.3
AADT (% Heavy Duty Truck)	165,672 (14%)	223,036 (7%)	239,110 (17%)
FE-AADT	374,419	363,549	604,948
PM _{2.5} emissions [lb/day/mile] (% road dust)	25.6 (51%)	30.3 (41%)	30.2 (44%)
Receptor distance to road	24.5 m	5.0 m	5.0 m

Uncertainty Context

- Modeling "chain" includes
 - Travel activity data
 - Emissions model (MOVES, AP-42)
 - Dispersion model (AERMOD, CAL3QHCR)
- Overall uncertainty (+200-500%) in the modeling chain in the Indianapolis and Providence analyses is large compared to approximate uncertainty associated with factors such as
 - Also (outside modeling chain) uncertainty in measured near-road increment (±20-70%)
 - "Intrinsic" dispersion model uncertainty (±50%)
- Next slide explores these issues further

Uncertainty Context

Component	Discussion
Travel Data	1. Volume, speed, and fleet mix are well characterized in this study
Emissions Modeling	 Modeled fraction of non-exhaust PM_{2.5} emissions (51-60%) is high compared to recent near-road measurement studies Road dust (AP-42): Highly uncertain, ~50% of modeled emissions Tire/brake wear (MOVES): Uncertain, but 7% of modeled emissions Exhaust (MOVES): Uncertain; EPA has identified over-prediction of PM exhaust for light and heavy-duty vehicles*
Dispersion Modeling	 Largest AERMOD biases associated with upwind conditions Overall bias at Indianapolis was reduced when using CAL3QHCR or when using airport meteorology (however, airport data was not as representative as the local meteorological data used in the base case)
Overall Uncertainty	Likely dominated by emissions and dispersion modeling components

*Based on EPA MOVES Model Review Work Group documents; e.g., "Updates to MOVES Heavy Duty Running Exhaust Rates: Diesel, Gasoline, and Natural Gas," G.S. Sandhu, D. Sonntag, April 10, 2019; "Light Duty PM Emission Rates Update," M. Aldridge, March 1, 2017. See: <u>https://www.epa.gov/moves/moves-model-review-work-group</u>.

Insights from Model-Monitor Comparisons

- Near-road modeling chain shows a high bias in PM_{2.5} predictions compared to measured near-road increments. This finding was consistent in both the Indianapolis and Providence analyses.
- 2. Overall uncertainty in the modeling chain is likely dominated by uncertainties in the emissions and dispersion modeling components.
- 3. Modeled fraction of non-exhaust $PM_{2.5}$ emissions (51-60%) is high compared to recent near-road measurement studies.
- 4. AERMOD results with local meteorology are less sensitive to wind direction compared to measured near-road increments, or compared to CAL3QHCR results.
- 5. Time-aggregating travel activity data does not significantly impact model results.
- 6. Uncertainty in measured increments is small enough to support model-to-monitor comparison if enough days of data are considered.

Conclusions

- 1. CO and NO₂ both well below NAAQS thresholds; $PM_{2.5}$ is below NAAQS at most sites.
- 2. PM_{2.5} increments vary widely, due to factors such as meteorology, traffic
 - Maximum <10 m from road is ~2.0 μ g/m³
 - Maximum >10 m from road is ~1.4 $\mu g/m^3$
- 3. The "modeling chain" over-predicted monitored concentrations
 - Modeled fraction of non-exhaust PM_{2.5} emissions is high compared to recent near-road measurement studies.
 - Largest AERMOD biases associated with upwind conditions.

Research Needs

- 1. Further investigate near-road increments by refining understanding of what factors most influence NR PM_{2.5} increments, especially given the weak statistical relationship between traffic conditions and measured increments.
- 2. Collect speciated PM_{2.5} measurements to better characterize exhaust vs. nonexhaust contributions to near-road concentrations.
- 3. Complete additional analyses across different geographic settings, roadway types and configurations, and methodologies (e.g., tracer evaluations) to build a more complete picture of model vs. monitor comparisons.

Acknowledgments

This work was completed as part of the Near-Road Air Quality pooled fund, under the FHWA Transportation Pooled Fund (TPF) program TPF-5(284).

The Washington State Department of Transportation (WSDOT) is the lead agency. Other participants include the FHWA and the Arizona, California, Colorado, Ohio, Texas, and Virginia Departments of Transportation.

The authors also acknowledge the assistance of Nealson Watkins of the U.S. EPA; and Song Bai, Yuan Du, Steve Reid, and Annie Seagram of the Bay Area Air Quality Management District.

Bibliography (Partial Listing)

Brown S.G., Penfold B.M., Mukherjee A., Landsberg K., and Eisinger D. (2019) Conditions leading to elevated PM_{2.5} at near-road monitoring sites: case studies in Denver and Indianapolis. *International Journal of Environmental Research and Public Health*, 16(9), 1634, doi: 10.3390/ijerph16091634 (STI-7047), May 10. Available at https://www.mdpi.com/1660-4601/16/9/1634.

Craig K., Baringer L., Chang C., Bai S., Landsberg K., and Eisinger D. (2019) Near-road PM_{2.5}, modeled vs. monitored data comparison: Indianapolis case study. Presented at the *Transportation Research Board 2019 Annual Meeting, Washington DC, January 14*, by Sonoma Technology, Inc., Petaluma, CA, and the Washington State Department of Transportation, Olympia, WA. STI-914202-7155.

Seagram A.F., Brown S.G., Huang S., Landsberg K., and Eisinger D.S. (2019) National assessment of near-road air quality in 2016: multi-year pollutant trends and estimation of near-road PM_{2.5} increment. *Transportation Research Record*, doi: 10.1177/0361198119825538 (STI-6963), January 30. Available at https://journals.sagepub.com/doi/10.1177/0361198119825538

DeWinter J.L., Brown S.G., Seagram A.F., Landsberg K., and Eisinger D.S. (2018) A national-scale review of air pollutant concentrations measured in the U.S. near-road monitoring network during 2014 and 2015. *Atmos. Environ.*, 183, 94-105, doi: 10.1016/j.atmosenv.2018.04.003 (STI-6777), June.

Reid S., Bai S., Du Y., Craig K., Erdakos G., Baringer L., Eisinger D., McCarthy M., and Landsberg K. (2016) Emissions modeling with MOVES and EMFAC to assess the potential for a transportation project to create particulate matter hot spots. *Transportation Research Record: Journal of the Transportation Research Board*, 2570, 12-20, doi: 10.3141/2570-02 (STI-6330).

Karner A., Eisinger D.S., and Niemeier D. (2010) Near-roadway air quality: synthesizing the findings from real-world data. *Environ. Sci. Technol.*, 44, 5334-5344, doi: 10.1021/es100008x (STI-3923). Available at http://pubs.acs.org/doi/abs/10.1021/es100008x.

Abou

Departm several

Contact

Transportation Pooled Fund Near-Road Air Quality	Forum News Events Contact Us Log In Search Pooled Fund Go
Ambient data Hot Spot Analysis Federal Regulation	is & Guidance Modeling Near-Road Resources Pooled Fund Work Products
Welcome to the Transportation Pooled Fund! Log in or request an account	Log in Email Password Request an Account Forgot Your Password?
About the Pooled Fund The Transportation Pooled Fund (TPF) was established by The Washington State Department of Transportation, the U.S. Federal Highway Administration (FHWA), and several state departments of transportation (DOTs), including those from Arizona, California, Texas, and Virginia, to help agencies identify and address a broad range of near-road issuesread more	News Articles Presentations from the 11th Conference on Air Quality Modeling available online The 11th Conference on Air Quality Modeling was held on the EPA Research Triangle Park Campus from A EPA proposes to revise the Guideline on Air Quality Models A proposal to revise the Guideline on Air Quality Models (CFR 40, Part 51, Appendix W) was sign EPA announces proposal to update the ozone NAAQS On November 25, 2014, the EPA proposed to strengthen the National Ambient Air Quality Standards (NAA

http://www.nearroadaqpf.com/welcome

Near-Road Analyses

Steven Brown, PhD sbrown@sonomatech.com 707.665.9900

lear-Road Pooled Fund

Karin Landsberg

Karin.Landsberg@wsdot.wa.gov 360.705.7491

Douglas Eisinger, PhD

doug@sonomatech.com 707.665.9900

Today's Participants

- Doug Eisinger, Sonoma Technology, Inc., doug@sonomatech.com
- Steve Brown, Sonoma Technology, Inc., steveb@sonomatech.com
- Kenneth Craig, Sonoma Technology, Inc., <u>kcraig@sonomatech.com</u>
- Karin Landsberg, Washington State Department of Transportation (WSDOT), <u>landsbk@wsdot.wa.gov</u>

Panelists Presentations

http://onlinepubs.trb.org/onlinepubs/webinars/190930.pdf

After the webinar, you will receive a follow-up email containing a link to the recording

Get Involved with TRB

- Getting involved is free!
- Join a Standing Committee (<u>http://bit.ly/2jYRrF6</u>)
- Become a Friend of a Committee (http://bit.ly/TRBcommittees)
 - Networking opportunities
 - May provide a path to become a Standing Committee member
- Sponsoring Committee: ADC20
- For more information: www.mytrb.org
 - Create your account
 - Update your profile

The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRB turns 100 on November 11, 2020

Help TRB:

- · Promote the value of transportation research;
- · Recognize, honor, and celebrate the TRB community; and
- · Highlight 100 years of accomplishments.

Learn more at

www.TRB.org/Centennial

MOVING IDEAS: ADVANCING SOCIETY—100 YEARS OF TRANSPORTATION RESEARCH

The National Academies of SCIENCES • ENGINEERING • MEDICINE

